Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. It is the second leading cause of cancer-related deaths worldwide, with a very poor prognosis. In the United States, there has been only minimal improvement in the prognosis for HCC patients over the past 15 years. Details of the molecular mechanisms and other mechanisms of HCC progression remain unclear. Consequently, there is an urgent need for better understanding of these mechanisms. HCC is often diagnosed at advanced stages, and most patients will therefore need systemic therapy, with sorafenib being the most common at the present time. However, sorafenib therapy only minimally enhances patient survival. This review provides a summary of some of the known mechanisms that either cause HCC or contribute to its progression. Included in this review are the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic predisposition and congenital abnormalities, toxic exposures, and autoimmune diseases of the liver. Well-established molecular mechanisms of HCC progression such as epithelial-mesenchymal transition, tumor-stromal interactions and the tumor microenvironment, cancer stem cells, and senescence bypass are also discussed. Additionally, we discuss the roles of circulating tumor cells, immunomodulation, and neural regulation as potential new mechanisms of HCC progression. A better understanding of these mechanisms could have implications for the development of novel and more effective therapeutic and prognostic strategies, which are critically needed.
Objectives-There are currently no diagnostic indicators that are consistently reliable, obtainable, and conclusive for diagnosing and risk-stratifying pancreatic cysts. Proteomic analyses were performed to explore pancreatic cyst fluids to yield effective diagnostic biomarkers.Methods-We have prospectively recruited 20 research participants and prepared their pancreatic cyst fluids specifically for proteomic analyses. Proteomic approaches applied were: 1) MALDI-TOF (matrix-assisted laser-desorption-ionization time-of-flight) mass spectrometry peptidomics with LC/ MS/MS (HPLC-tandem mass spectrometry) protein identification. 2) 2D gel electrophoresis. 3) GeLC/MS/MS (tryptic digestion of proteins fractionated by SDS-PAGE and identified by LC/MS/ MS).Results-Sequencing of over 350 free peptides showed that exopeptidase activities rendered peptidomics of cyst fluids unreliable; Protein nicking by proteases in the cyst fluids produced hundreds of protein spots from the major proteins, making 2D gel proteomics unmanageable; GeLC/ MS/MS revealed a panel of potential biomarker proteins that correlated with CEA (carcinoembryonic antigen).Conclusions-Two homologs of amylase, solubilized molecules of four mucins, four solubilized CEACAMs (CEA-related cell adhesion molecules), and four S100 homologs, may be candidate biomarkers to facilitate future pancreatic cyst diagnosis and risk-stratification. This approach required less than 40 microliters of cyst fluid per sample, offering the possibility to analyze cysts smaller than 1 cm diameter.
BackgroundHepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell.Methodology/Principal FindingsTo gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNβ) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNβ expression, but not between viral RNA and ISG levels. Also, IFNβ expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs.Conclusion/SignificanceThe low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNβ, which then activates ISGs. The apparent lack of a correlation between levels of IFNβ and ISG expression indicates that control of the innate immune response during HCV infections depends on multiple factors.
A self-administered 72-item questionnaire can stratify patients into HCV risk groups. If validated in other primary care populations, this instrument could help target HCV screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.