Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.
Acute myeloid leukemia (AML) has been shown to undergo multiple acquired mutations in hematopoietic cell lineages over years before becoming clinically apparent. The early stage of AML (before it becomes clinically recognizable) may be characterized by acquisition of some, but not all, leukemia-related somatic mutations in hematopoietic stem cells (HSCs). The physiological roles of these mutations remain puzzling. These HSCs have been termed as preleukemic HSCs. However, those frequent acquired somatic mutations are also found in healthy aging adults, namely, “age-related clonal hematopoiesis.” Multiple studies have demonstrated that the preleukemic HSCs survive through chemotherapy and then contribute to the relapse and the development of de novo AML. Whether preleukemic HSCs should be targeted or whether a preventive therapy should be considered for those individuals remains to be determined. This article aims to shed light on this special subject and to discuss the roles of preleukemic HSCs in leukemogenesis.
Spliceosome machinery mutations are common early mutations in myeloid malignancies, however effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified ROCK inhibitors (ROCKi) as selective inhibitors of SRSF2 mutants. ROCKi targeted SRSF2 Mut primary human samples in a xenografts model and were not toxic to mice nor human cells. ROCKi induced mitotic catastrophe through their apparent effects on microtubules and nuclear organization. Transmission electron microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation, driven by microtubule-rich cytoplasmic intrusions, which were exacerbated by ROCKi. The severe nuclear deformation driven by the combination of SRSF2 Mut and ROCKi prevent cells from completing mitosis. These findings shed light on new ways to target SRSF2 and on the role of the microtubule system in SRSF2 Mut cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.