Neuroblastoma is one of the most common pediatric cancers. This study used machine learning (ML) to predict the mortality and a few other investigated intermediate outcomes of neuroblastoma patients non-invasively from CT images. Performances of multiple ML algorithms over retrospective CT images of 65 neuroblastoma patients are analyzed. An artificial neural network (ANN) is used on tumor radiomic features extracted from 3D CT images. A pre-trained 2D convolutional neural network (CNN) is used on slices of the same images. ML models are trained for various pathologically investigated outcomes of these patients. A subspecialty-trained pediatric radiologist independently reviewed the manually segmented primary tumors. Pyradiomics library is used to extract 105 radiomic features. Six ML algorithms are compared to predict the following outcomes: mortality, presence or absence of metastases, neuroblastoma differentiation, mitosis-karyorrhexis index (MKI), presence or absence of MYCN gene amplification, and presence of image-defined risk factors (IDRF). The prediction ranges over multiple experiments are measured using the area under the receiver operating characteristic (ROC-AUC) for comparison. Our results show that the radiomics-based ANN method slightly outperforms the other algorithms in predicting all outcomes except classification of the grade of neuroblastic differentiation, for which the elastic regression model performed the best. Contributions of the article are twofold: (1) noninvasive models for the prognosis from CT images of neuroblastoma, and (2) comparison of relevant ML models on this medical imaging problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.