Intrinsic defect oxygen vacancies, which can easily form in ZnO films and result in a compensation effect on p-type dopants, have long prevented the preparation of high-quality p-type ZnO; consequently, the application of ZnO in optoelectronic devices has been adversely affected. Therefore, in this investigation, the passivation of oxygen vacancies in undoped ZnO using H2O2 as an oxygen source is studied using atomic layer deposition (ALD). The ALD growth window ranged from 60 to 150 °C, and the use of H2O2 as an oxygen source, instead of H2O, changed the preferred growth orientation from coexisting a- and c-axes to only the c-axis, which indicated that H2O2 can provide an oxygen-rich environment for the growth of ZnO. Photoluminescence results indicated that oxygen vacancies in the ZnO film reduced significantly when H2O2 was used as the oxygen precursor instead of H2O for film preparation. Further, oxygen vacancies can be suppressed more efficiently using H2O2 when ZnO films were deposited at lower temperatures than at high temperatures. A decrease in the optical bandgap and an increase in the work function were observed when films were prepared using H2O2 due to a lowering of the Fermi level. Therefore, the use of H2O2 as an oxygen source is effective in providing an oxygen-rich environment and passivating oxygen vacancies in ZnO, which might be beneficial for the preparation of p-type ZnO films.
The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H 2 O 2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H 2 O 2 as the oxygen precursor instead of a conventional oxygen source such as H 2 O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H 2 O 2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.