The authors reveal the mechanisms of degradation of capacity, charge voltage, and discharge voltage of commercially‐available high‐nickel cathode material when it is cycled without a voltage margin by two different charge protocols: constant‐current charging and constant‐current, constant‐voltage charging. With repeated constant‐current charging, the cathode material changes to a non‐periodic cation‐mixed state, which causes a relatively low voltage degradation, whereas during constant‐current, constant‐voltage charging, the cathode material changes from a layered structure to a periodic cation‐mixed spinel‐like phase, with consequent severe voltage decay. This decay results from a reduction in the equilibrium electrode potential and an increase of overpotential which are aggravated in a periodic cation‐mixed state. The findings provide insights into the use of excess Li without charge‐voltage margin in high‐Ni cathode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.