This study investigated the anti-obesity effects of collagen peptide derived from skate skin on lipid metabolism in high-fat diet (HFD)-fed mice. All C57BL6/J male mice were fed a HFD with 60% kcal fat except for mice in the normal group which were fed a chow diet. The collagen-fed groups received collagen peptide (1050 Da) orally (100, 200, or 300 mg/kg body weight per day) by gavage, whereas the normal and control groups were given water (n = 9 per group). The body weight gain and visceral adipose tissue weight were lower in the collagen-fed groups than in the control group (p < 0.05). Plasma and hepatic lipid levels were significantly reduced by downregulating the hepatic protein expression levels for fatty acid synthesis (sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)) and cholesterol synthesis (SREBP-2 and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)) and upregulating those for β-oxidation (peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase 1 (CPT1)) and synthesis of bile acid (cytochrome P450 family 7 subfamily A member 1 (CYP7A1)) (p < 0.05). In the collagen-fed groups, the hepatic protein expression level of phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK) and plasma adiponectin levels were higher, and the leptin level was lower (p < 0.05). Histological analysis revealed that collagen treatment suppressed hepatic lipid accumulation and reduced the lipid droplet size in the adipose tissue. These effects were increased in a dose-dependent manner. The findings indicated that skate collagen peptide has anti-obesity effects through suppression of fat accumulation and regulation of lipid metabolism.
This study investigated the abilities of kimchi and its bioactive compounds to ameliorate amyloid beta (Aβ)-induced memory and cognitive impairments. Mice were given a single intracerebroventricular injection of Aβ25-35, followed by a daily oral administration of capsaicin (10 mg·kg-bw–1), 3-(4′-hydroxyl-3′,5′-dimethoxyphenyl)propionic acid (50 mg/kg bw), quercetin (50 mg/kg bw), ascorbic acid (50 mg/kg bw), or kimchi methanol extract (KME; 200 mg/kg bw) for 2 weeks (n = 7 per group). Carboxymethylcellulose was used as a vehicle for the normal and control groups. Behavioral task tests showed that the learning and memory abilities were significantly waned by the injected Aβ25-35, but these cognitive deficits were recovered by the administrated KME and kimchi bioactive compounds (p < 0.05). The reactive oxygen species, peroxynitrite, and thiobarbituric acid reactive substances levels were lower, and the glutathione level was higher, in the KME and bioactive compound groups than in the control group (p < 0.05). In the KME and bioactive compound groups, the protein expression levels of antioxidant enzymes (nuclear factor (erythroid-derived 2)-like 2-regulated superoxide dismutase-1 and glutathione peroxidase) were increased, whereas those of inflammation-related enzymes (nuclear factor-kappaB -regulated inducible nitric oxide synthase and cyclooxygenase-2) were decreased (p < 0.05). Thus, the antioxidative and anti-inflammatory properties of bioactive compounds-rich kimchi might help to attenuate the symptoms of Alzheimer’s disease.
This study investigated the inhibitory effects of kimchi bioactive compounds against endoplasmic reticulum (ER) stress-induced apoptosis in amyloid beta (Aβ)-injected mice. Mice received a single intracerebroventricular injection of Aβ, except for the normal group. Mice were subjected to oral administration of 10 mg of capsaicin, 50 mg of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), 50 mg of quercetin, 50 mg of ascorbic acid, or 200 mg of kimchi methanol extract (KME) per kilogram of body weight for 2 weeks ( n = 7 per group). In the in vitro blood-brain barrier (BBB) permeability test, all bioactive compounds penetrated the BBB except ascorbic acid. The protein expression level of APP, BACE, and p-Tau elevated by Aβ injection was decreased by kimchi bioactive compounds ( P < 0.05). Quercetin, HDMPPA, and KME decreased oxidative stress, as indicated by ROS and TBARS levels ( P < 0.05). The protein expression level of ER stress markers GRP78, p-PERK, p-eIF2α, XBP1, and CHOP and the proapoptotic molecules Bax, p-JNK, and cleaved caspases-3 and -9 decreased ( P < 0.05). In contrast, the protein expression level of antiapoptotic molecules Bcl2 and cIAP increased ( P < 0.05). These results were supported by histological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.