Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants.
A novel microextraction technique based on membrane-protected multiwalled carbon nanotubes coated with molecularly imprinted polymer (MWCNTs-MIP) was developed. In this technique, MWCNTs-MIP were packed inside a polypropylene membrane envelope, which was then clamped onto a paper clip. For extraction, the packed membrane envelope was first impregnated with toluene and then placed in sample solutions. Target analytes in the solutions were first extracted into toluene in the membrane envelope, and were then extracted specifically onto the MWCNTs-MIP. After the extraction, target analytes were desorbed in methanol for liquid chromatography analysis. MWCNTs-MIP of prometryn were used as a model to demonstrate the feasibility of this novel microextraction technique. Factors affecting the extraction including organic solvent, stirring rate, extraction time, salt concentration, and pH were investigated. Under the optimized conditions, the limits of detection (a signal-to-noise ratio of 3) for the selected triazine herbicides were 0.08-0.38 μg/L. The prepared membrane envelope could be used at least 50 times. The developed method was used for the analysis of the triazines spiked in river water, wastewater, and liquid milk, with recoveries ranging from 79.3-97.4, 58.9-110.3 and 76.2-104.9%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.