BackgroundOne major impediment to improving the management of breast cancer is the current lack of tumor marker with sufficient sensitivity and specificity. A growing body of evidence implicates the diagnostic potential of circulating miRNAs in cancer detection. MiR-155 plays an important role in the pathogenesis of breast cancer. However, the level of circulating miR-155 and its clinical relevance are not well established. The objective of the current study was to learn more about serum miR-155 in patients with breast cancer.Methodology/Principal FindingsUsing quantitative reverse transcription polymerase chain reaction (RT-qPCR), we demonstrated that serum miR-155 had significant increased levels in breast cancer patients (n = 103) compared with healthy subjects (n = 55) (p<0.001), which had a mean fold change of 2.94. Receiver operating characteristic (ROC) analysis revealed that miR-155 had considerable diagnostic accuracy, yielding an ROC-AUC (the areas under the ROC curve) of 0.801 (sensitivity 65.0%, specificity 81.8%). In addition, sera from a subset of breast cancer patients (n = 29) were collected after surgery and after four cycles of chemotherapy to evaluate the effects of clinical treatment on serum levels of candidate miRNAs. Surprisingly, a decreased level of serum miR-155 was found; whereas the concentrations of carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA) and tissue polypeptide specific antigen (TPS) did not show this trend. Our results revealed that 79% patients showed response or stable disease after therapy had declined levels of serum miR-155.Conclusions/SignificanceOur results suggest that serum miR-155 is a potential biomarker to discriminate breast cancer patients from healthy subjects. For the first time, we demonstrated a declined trend of miR-155 after surgery and chemotherapy, which raises the possibility to use it as an indicator for treatment response.
Liquid biopsies, based on cell free DNA (cfDNA) and proteins, have shown the potential to detect early stage cancers of diverse tissue types. However, most of these studies were retrospective, using individuals previously diagnosed with cancer as cases and healthy individuals as controls. Here, we developed a liquid biopsy assay, named the hepatocellular carcinoma screen (HCCscreen), to identify HCC from the surface antigen of hepatitis B virus (HBsAg) positive asymptomatic individuals in the community population. The training cohort consisted of individuals who had liver nodules and/or elevated serum α-fetoprotein (AFP) levels, and the assay robustly separated those with HCC from those who were non-HCC with a sensitivity of 85% and a specificity of 93%. We further applied this assay to 331 individuals with normal liver ultrasonography and serum AFP levels. A total of 24 positive cases were identified, and a clinical follow-up for 6–8 mo confirmed four had developed HCC. No HCC cases were diagnosed from the 307 test-negative individuals in the follow-up during the same timescale. Thus, the assay showed 100% sensitivity, 94% specificity, and 17% positive predictive value in the validation cohort. Notably, each of the four HCC cases was at the early stage (<3 cm) when diagnosed. Our study provides evidence that the use of combined detection of cfDNA alterations and protein markers is a feasible approach to identify early stage HCC from asymptomatic community populations with unknown HCC status.
Hexagonal hierarchical microtubular structures are produced by diphenylalanine self-assembly and the ratio of the relative humidity in the growth chamber to the diphenylalanine concentration (defined as the RH-FF ratio) determines the microtubular morphology. The hexagonal arrangement of the diphenylalanine molecules first induces the hexagonal nanotubes with opposite charges on the two ends, and the dipolar electric field on the nanotubes serves as the driving force. Side-by-side hexagonal aggregation and end-to-end arrangement ensue finally producing a hexagonal hierarchical microtubular structure. Staining experiments and the external electric field-induced parallel arrangement provide evidence of the existence of opposite charges and dipolar electric field. In this self-assembly, the different RH-FF ratios induce different contents of crystalline phases. This leads to different initial nanotube numbers finally yielding different microtubular morphologies. Our calculation based on the dipole model supports the dipole-field mechanism that leads to the different microtubular morphologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.