The short‐term electricity consumption forecasting can help to ensure the safe and reliable operation of the power system. Power companies usually need to report the electricity consumption of the current month five to seven days in advance and make a power generation plan for the next month. The existing studies are usually lack of appropriate feature selection methods and hard to achieve satisfactory results. This paper proposes a short‐term electricity consumption forecasting approach based on feature processing and hybrid modelling. The maximum information coefficient (MIC) is employed to analyse the feature correlation, the electricity consumption curves are converted to several sub‐sequences of different frequency bands by the variational mode decomposition (VMD) to describe signal characteristics accurately, a hybrid model based on bidirectional gated recurrent unit (BiGRU) is innovated to extract the temporal and spatial features of the data and capture the contextual information from the complete time series, attention mechanism is used to do extract useful information and assign weights to make forecast. Compared with several benchmark methods, the proposed approach achieves better electricity consumption curve fitting and higher forecasting accuracy with the increase of forecasting step size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.