The independent point scheme (IPS) is applied to inverting initial condition with the adjoint method for the ocean pollutant transport model in this work. As an improvement, the linear Cressman interpolation is removed and the surface spline interpolation is implemented in the IPS. A series of numerical experiments are carried out to test and compare the improved IPS. And experiment results show that through applying the improved IPS, what is further reduced is mean absolute errors between simulation results and observations. Moreover, the inverted distributions are more smooth, accurate and reasonable. In addition, the application of improved IPS also reduces the variables that need to be inverted and promotes the computational efficiency. By these numerical experiment results, it is demonstrated that the combination of improved IPS and adjoint method can be used for the inversion of initial conditions and parameters estimation more effectively and reliably.
Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b) and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.