This research describes a wearable skin hydration sensor based on cotton textile to determine the state of hydration within the skin via impedance analysis. The sensor structure comprises a textile substrate, thermoplastic over-layer, conductive patterns, and encapsulant, designed for stable and reliable monitoring of the skin’s impedance change in relation to hydration level. The porcine skin with different hydration levels was prepared as a model system of the skin, and the textile-based sensor carefully investigated the porcine skin samples’ impedance characteristics. The impedance study reveals that (1) the total impedance of skin decreases as its hydration level increases, and (2) the impedance of the stratum corneum and epidermis layers are more dominantly affected by the hydration level of the skin than the dermis layer. Even after repetitive bending cycles, the impedance data of skin measured by the sensor exhibit a reliable dependence on the skin hydration level, which validates the flexibility and durability of the sensor. Finally, it is shown that the textile-based skin hydration sensor can detect various body parts’ different hydration levels of human skin while maintaining a stable conformal contact with the skin. The resulting data are well-matched with the readings from a commercial skin hydration sensor.
Respiratory illness caused by influenza virus is a serious public health problem worldwide. As the symptoms of influenza virus infection are similar to those of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it is essential to distinguish these two viruses. Therefore, to properly respond to a pathogen, a detection method that is capable of rapid and accurate diagnosis in a hospital or at home is required. To satisfy this need, we applied loop-mediated isothermal amplification (LAMP) and an isothermal nucleic acid amplification technique, along with a system to analyze the results without specialized equipment, a lateral flow assay (LFA). Using the platform developed in this study, all processes, from sample preparation to detection, can be performed without special equipment. Unlike existing PCR methods, the nucleic acid amplification can be performed in the field because hot packs do not require electricity. Thus, the designed platform can provide rapid results without the need to transport the samples to a laboratory or hospital. These advantages are not limited to operations in developing countries with poor access to medical systems. In conclusion, the developed technology is a promising tool for infectious disease management that allows for rapid identification of infectious diseases and appropriate treatment of patients.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00216-022-04090-8.
In this study, a new platform for the detection of porcine circovirus 2 was developed by avidin-biotin complex based lateral flow assay (LAMP-LFA). Improved detection sensitivity was attained by using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.