Background: Liver injury commonly occurs in patients with COVID-19. There is limited data describing the course of liver injury occurrence in patients with different disease severity, and the causes and risk factors are unknown. We aim to investigate the incidence, characteristics, risk factors, and clinical outcomes of liver injury in patients with COVID-19.Methods: This retrospective observational study was conducted in three hospitals (Zhejiang, China). From January 19, 2020 to February 20, 2020, patients confirmed with COVID-19 (≥18 years) and without liver injury were enrolled and divided into non-critically ill and critically ill groups. The incidence and characteristics of liver injury were compared between the two groups. Demographics, clinical characteristics, treatments, and treatment outcomes between patients with or without liver injury were compared within each group. The multivariable logistic regression model was used to explore the risk factors for liver injury.Conclusions: Critically ill patients with COVID-19 suffered earlier occurrence, greater injury severity, and slower recovery from liver injury than non-critically ill patients. Drug factors were related to liver injury in non-critically ill patients. Liver injury was related to prolonged hospital stay and viral shedding duration in patients with COVID-19.
Isoneochamaejasmin A (INCA), a biflavonoid, is one of main active ingredients in the dried root of Stellera chamaejasme L., a widely used traditional Chinese medicine. In the present study, we identified the glucuronidation metabolite of INCA and characterized the UDP glucuronosyltransferases (UGTs) responsible for INCA glucuronidation. 7-O-glucuronide (M1) and 49-O-glucuronide (M2) were identified by incubation of INCA with human liver microsomes (HLMs) in the presence of UDP glucuronic acid, and their structures were confirmed by high-resolution mass spectrometry and nuclear magnetic resonance analyses. Although INCA is a single enantiomer molecule, its M1 metabolite showed two equal-size peaks on a pNAP stationary phase but only one peak on a C 18 stationary phase, indicating that the 7-/799-and 49-/4999-hydroxyl groups of INCA were in different spatial configurations relative to each other.Among the recombinant human UGT isoform test and correlation analysis, UGT1A1, UGT1A3, and UGT1A9 were found to mediate M1 formation, whereas only UGT1A3 mediated M2 formation. Kinetic studies showed obvious species differences between human, mouse, rat, dog, and pig liver microsomes. UGT1A1, HLMs, and human intestinal microsomes, but not human kidney microsomes, exhibited substrate inhibition for the formation of M1. UGT1A1-mediated formation of M1 showed a 6-and 11-fold higher V max than did UGT1A3-and UGT1A9-mediated formation of M1, respectively. The results of the relative activity factor assay showed that UGT1A1 contributed approximately 75% in the formation of M1. These findings collectively indicate that UGT1A1 is the major enzyme in the formation of M1, whereas UGT1A3 is the major enzyme in the formation of M2.
The PI3K/AKT/MTOR signalling pathway plays an important role in the growth and proliferation of tumour cells. N-((3S,4S)-4-(3,4-Difluorophenyl)piperidin-3-yl)-2-fluoro-4-(1-methyl-1H-pyrazol-5-yl)benzamide (Hu7691) is a new-generation selective AKT inhibitor developed at Zhejiang University. In this study, we developed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the measurement of Hu7691 in dog plasma. Plasma was precipitated with acetonitrile and then separated on a trifunctionally bonded alkyl column. Excellent separation efficiency and selectivity were achieved by adjusting the mobile phase ratio, with a total running time of only 5 min. The linear dynamic range of the calibration curve was 5–1000 ng/mL. The method was fully validated, and all performance metrics met the criteria. The validated method was used for the pharmacokinetic monitoring and bioavailability assessment of Hu7691 in dogs. The results showed that the area under the curve and peak plasma concentration of Hu7691 increased with increasing dose (oral 5, 10, 20 mg/kg, intravenous 10 mg/kg), and oral bioavailabilities were 86.7%, 50.8%, and 50.5%, respectively, indicating a high bioavailability of Hu7691 in dogs. This provides a test basis for the clinical application of the compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.