Understanding interwell connectivity is crucial for EOR decision making. In 1990, K.N Wood et al proposed a method to evaluate the interwell Residual Oil using a reactive tracer and a non-partition tracer. A decade later in 2001 (Joseph Tang, 2001), Joseph Tang et al proposed a method to identify the single well near bore residual oil saturation by puff and huff approach in a single well carbonate reservoir. Today the interwell connectivity is still under research. The objective of this paper is to propose latest study to evaluate interwell connectivity through two or more partitioning tracers to estimate the breakthrough, pore volume, sweeping channel geometry, high permeability channel, residual oil saturation, etc Thanks to the new development in tracer technologies, today we can use two distinctive tracers to pump through injection well and collect tracers produced in all production wells. The different partition coefficients for two tracers can reveal the lag factor for the sweeping channel and further derive the statistical channel breakthrough time, pore volume, geometry, tortuosity and residual oil saturation. The theory, derivation and applications of the concepts are described in this paper. Based on the analysis, sweeping channels statistical information can be calculated by a simple mathematical expression of the ratio of two distinctive tracer mass produced from production wells, the ratio of two tracer dynamic partitioning coefficients and the ratio of two injected tracer mass. With this information, operator can investigate a compartmentalization in the field to optimize flooding plan. One 9-piont injection well grid were analyzed, and results are shown in this paper. Those results are important input to operators' reservoir model. It revealed the major sweeping channels and azimuths, the major residual oil channel and their azimuths, the possible tortuous channels and their azimuths which gives operator a direction of where the residual oil resides and how easy or difficult it can be recovered in tertiary oil production. This new theory analyzes sweeping channel statistical information from produced masses of two distinctively partitioning tracers, which follows a rigorous mathematical derivation and setup a volume factor equation relating to produced masses of two partitioning tracers. The partitioning coefficient is also modified by a dynamic factor to better simulate the moving partition in channel rather than the static partitioning between brine and oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.