In aging men, the prostate gland becomes hyperproliferative and displays a propensity toward carcinoma. Although this hyperproliferative process has been proposed to represent an inappropriate reactivation of an embryonic differentiation program, the regulatory genes responsible for normal prostate development and function are largely undefined. Here we show that the murine Nkx3.1 homeobox gene is the earliest known marker of prostate epithelium during embryogenesis and is subsequently expressed at all stages of prostate differentiation in vivo as well as in tissue recombinants. A null mutation for Nkx3.1 obtained by targeted gene disruption results in defects in prostate ductal morphogenesis and secretory protein production. Notably, Nkx3.1 mutant mice display prostatic epithelial hyperplasia and dysplasia that increases in severity with age. This epithelial hyperplasia and dysplasia also occurs in heterozygous mice, indicating haploinsufficiency for this phenotype. Because human NKX3.1 is known to map to a prostate cancer hot spot, we propose that NKX3.1 is a prostate-specific tumor suppressor gene and that loss of a single allele may predispose to prostate carcinogenesis. The Nkx3.1 mutant mice provide a unique animal model for examining the relationship between normal prostate differentiation and early stages of prostate carcinogenesis.
Genomes of human cancer cells are characterized by numerous chromosomal aberrations of uncertain pathogenetic significance. Here, in an inducible mouse model of melanoma, we characterized metastatic variants with an acquired focal chromosomal amplification that corresponds to a much larger amplification in human metastatic melanomas. Further analyses identified Nedd9, an adaptor protein related to p130CAS, as the only gene within the minimal common region that exhibited amplification-associated overexpression. A series of functional, biochemical, and clinical studies established NEDD9 as a bona fide melanoma metastasis gene. NEDD9 enhanced invasion in vitro and metastasis in vivo of both normal and transformed melanocytes, functionally interacted with focal adhesion kinase and modulated focal contact formation, and exhibited frequent robust overexpression in human metastatic melanoma relative to primary melanoma. Thus, comparative oncogenomics has enabled the identification and facilitated the validation of a highly relevant cancer gene governing metastatic potential in human melanoma.
We have used nuclear transplantation to test whether the reprogramming activity of oocytes can reestablish developmental pluripotency of malignant cancer cells. We show here that the nuclei of leukemia, lymphoma, and breast cancer cells could support normal preimplantation development to the blastocyst stage but failed to produce embryonic stem (ES) cells. However, a blastocyst cloned from a RAS-inducible melanoma nucleus gave rise to ES cells with the potential to differentiate into multiple cell types in vivo including melanocytes, lymphocytes, and fibroblasts. Chimeras produced from these ES cells developed cancer with higher penetrance, shorter latency, and an expanded tumor spectrum when compared with the donor mouse model. These results demonstrate that the secondary changes of a melanoma nucleus are compatible with a broad developmental potential but predispose mice to melanomas and other malignant tumors on reactivation of RAS. Our findings serve as a paradigm for studying the tumorigenic effect of a given cancer genome in the context of a whole animal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.