Although it is commonly known that H-type PBI aggregates give rise to a broad, red-shifted excimer fluorescence with considerably longer fluorescence lifetimes than observed for the monomers, the underlying mechanisms of excimer formation and other relevant exciton dynamics in such π-stacked systems are still far from being understood. In this context, we demonstrate a thorough spectroscopic investigation on the exciton relaxation pathways, including excimer formation, in a perylene-3,4:9,10-bis(dicarboximide) (PBI) dimer aggregate 1 by using time-resolved fluorescence and transient absorption spectroscopy combined with excitation-power and polarization dependence. It was found that the excited dimer formation process followed by structural rearrangement is approximately two times faster than observed within larger PBI aggregates. Excitation-power-dependent transient absorption decay profiles revealed the fully delocalized nature of excitons in the dimer as opposed to larger stacks.
Plants prevent photodamage under high light by dissipating excess energy as heat. Conformational changes of the photosynthetic antenna complexes activate dissipation by leveraging the sensitivity of the photophysics to the protein structure. The mechanisms of dissipation remain debated, largely due to two challenges. First, because of the ultrafast timescales and large energy gaps involved, measurements lacked the temporal or spectral requirements. Second, experiments have been performed in detergent, which can induce nonnative conformations, or in vivo, where contributions from homologous antenna complexes cannot be disentangled. Here, we overcome both challenges by applying ultrabroadband twodimensional electronic spectroscopy to the principal antenna complex, LHCII, in a near-native membrane. Our data provide evidence that the membrane enhances two dissipative pathways, one of which is a previously uncharacterized chlorophyll-to-carotenoid energy transfer. Our results highlight the sensitivity of the photophysics to local environment, which may control the balance between light harvesting and dissipation in vivo.
Highly twisted π-conjugated molecules have been attractive but challenging targets. We report here an efficient synthesis of highly twisted diporphyrins with 126° and 136° twist angles that involves an oxidative fusion reaction of planar aminoporphyrin precursors at room temperature. Repeated amination-oxidative fusion sequences provide a unidirectionally twisted tetramer. The twisting angle of the tetramer is 298°.
Unprecedented neutral perylene-3,4:9,10-tetracarboxylic acid bisimide (PBI) radicals and biradicals were synthesized by facile chemical oxidation of 4-hydroxyaryl-substituted PBIs. Subsequent characterization by optical and magnetic spectroscopic techniques, as well as quantum chemical calculations, revealed an open-shell singlet biradical ground state for the PBI biradical OS-2(..) (〈s(2)〉=1.2191) with a relatively small singlet-triplet energy gap of 0.041 eV and a large singlet biradical character of y=0.72.
In this work, we have elucidated in detail the folding properties of two perylene bisimide (PBI) foldamers composed of two and three PBI units, respectively, attached to a phenylene ethynylene backbone. The folding behaviors of these new PBI folda-dimer and trimer have been studied by solvent-dependent UV/Vis absorption and 1D and 2D NMR spectroscopy, revealing facile folding of both systems in tetrahydrofuran (THF). In CHCl3 the dimer exists in extended (unfolded) conformation, whereas partially folded conformations are observed in the trimer. Temperature-dependent (1) H NMR spectroscopic studies in [D8 ]THF revealed intramolecular dynamic processes for both PBI foldamers due to, on the one hand, hindered rotation around CN imide bonds and, on the other hand, backbone flapping; the latter process being energetically more demanding as it was observed only at elevated temperature. The structural features of folded conformations of the dimer and trimer have been elucidated by different 2D-NMR spectroscopy (e.g., ROESY and DOSY) in [D8 ]THF. The energetics of folding processes for the PBI dimer and trimer have been assessed by calculations applying various methods, particularly the semiempirical PM6-DH2 and the more sophisticated B97D approach, in which relevant dispersion corrections are included. These calculations corroborate the results of NMR spectroscopic studies. Folding features in the excited states of these PBI foldamers have been characterized by using time-resolved fluorescence and transient absorption spectroscopy in THF and CHCl3 , exhibiting similar solvent-dependent behavior as observed for the ground state. Interestingly, photoinduced electron transfer (PET) process from electron-donating backbone to electron-deficient PBI core for extended, but not for folded, conformations was observed, which can be explained by a fast relaxation of excited PBI stacks in the folded conformation into fluorescent excimer states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.