The randomness, volatility, and intermittence of solar power generation make it difficult to achieve the desired accuracy of PV output-power prediction. Therefore, the time learning weight (TLW) proposed in this paper is used to improve the time correlation of the LSTM network. The Fusion Activation Function (FAF) is used to resolve gradient disappearance. Learning Factor Adaptation (LFA) and Momentum Resistance Weight Estimation (MRWE) are used to accelerate weight convergence and improve global search capabilities. Finally, this paper synthesizes the improvement and proposes the AHPA-LSTM model to stabilize the convergence domain. Using actual data verification, the δ MAPE indicator of the improved model is only 2.85% on a sunny day, 5.92% on a cloudy day, 7.71% on a rainy day, and only 5.8% on average. Therefore, the AHPA-LSTM model under full climate and climatic conditions has a good predictive effect which is generally applicable to the prediction of ultra-short-term PV power generation. INDEX TERMS Photovoltaic output power, ultra-short-term prediction, long short term memory (LSTM), time weight decoupling, adaptive hyperparameter adjustment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.