All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.
Conductive electrodes and electric circuits that can remain active and electrically stable under large mechanical deformations are highly desirable for applications such as flexible displays, field-effect transistors, energy-related devices, smart clothing and actuators. However, high conductivity and stretchability seem to be mutually exclusive parameters. The most promising solution to this problem has been to use one-dimensional nanostructures such as carbon nanotubes and metal nanowires coated on a stretchable fabric, metal stripes with a wavy geometry, composite elastomers embedding conductive fillers and interpenetrating networks of a liquid metal and rubber. At present, the conductivity values at large strains remain too low to satisfy requirements for practical applications. Moreover, the ability to make arbitrary patterns over large areas is also desirable. Here, we introduce a conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications. A silver nanoparticle precursor is absorbed in electrospun poly (styrene-block-butadiene-block-styrene) (SBS) rubber fibres and then converted into silver nanoparticles directly in the fibre mat. Percolation of the silver nanoparticles inside the fibres leads to a high bulk conductivity, which is preserved at large deformations (σ ≈ 2,200 S cm(-1) at 100% strain for a 150-µm-thick mat). We design electric circuits directly on the electrospun fibre mat by nozzle printing, inkjet printing and spray printing of the precursor solution and fabricate a highly stretchable antenna, a strain sensor and a highly stretchable light-emitting diode as examples of applications.
While the regioregularity (RR) of conjugated polymers is known to have a strong influence on their inherent properties, systematic study of the RR effect has been limited due to the lack of a synthetic methodology. Herein, we successfully produced a series of poly(3-hexylthiophene)s (P3HTs) having a wide range of RR from 64 to 98%. Incorporation of controlled amounts of head-to-head (H−H) coupled dimer in modified Grignard metathesis polymerization allows a facile tuning of the RR of the P3HTs with comparable molecular weight and low polydispersity. Then, we investigated the effect of RR on structural, electrical, and mechanical properties of P3HTs in which a higher content of H−H regio-defects, namely lower RR, systematically lowered the degree of crystallinity. Although high RR P3HT (98%) had higher charge carrier mobility (1.81 × 10 −1 cm 2 V −1 s −1 ), its strong crystallinity induced high brittleness and stiffness, resulting in device failure under a very small strain, as shown in tensile and bending tests. The tensile modulus was reduced significantly from 287 MPa (RR 98%) to 13 MPa (RR 64%), and also the RR 64% P3HT film had much better mechanical resilience with an order of magnitude higher elongation at break than that of the RR 98% polymer. Our findings suggest that the mechanical and electrical properties of conjugated polymers can be systematically tuned by controlling the RR to meet the purposes of various organic electronic applications, i.e., flexible portable devices vs high-performance panels.
A stretchable polymer channel layer for organic field-effect transistors is obtained by spin-coating a blend solution of polythiophene and rubber polymer. A network of the polythiophene nanofibril bundles surface-embedded in the rubber matrix allows large stretchability of the polythiophene film layer.
In spite of the recent successes in transistors and solar cells utilizing poly(3-hexylthiophene) (P3HT) nanofibrils, systematic analysis on the growth kinetics has not been reported due to the lack of analytical tools. This study proposed a simple spectroscopic method to obtain the crystallinity of P3HT in solutions. On the basis of the analytical approach, we found that the crystallinity hysteresis upon temperature is a simple function of the solubility parameter difference (Δδ) between the P3HT and the solvents. When Δδ ≥ 0.7, a cooling (−20°C)-and-heating (25°C) process allowed the preparation of solutions including 1D crystal seeds dispersed in the solution. Simple coating of the seeded solutions completed the growth of the seeds into long nanofibrils at the early stage of the coating and thereby achieved almost 100% crystallinity in the resulting films without any postannealing process. The existence of PCBM for bulkheterojunction (BHJ) solar cells did not affect the nucleation and growth of the nanofibrils during the cooling-and-heating process. The solar cells prepared from the solutions with Δδ ≥ 0.7 had solar conversion efficiencies higher than the conventional thermally annealed cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.