Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
The production, use, and waste of plastics increased worldwide, which resulted in environmental pollution and a growing public health problem. In particular, microplastics have the potential to accumulate in humans and mammals through the food chain. However, the toxicity of microplastics is not well understood. In this study, we investigated the toxicity of 10–50 μm polyethylene microplastics following single- and 28-day repeated oral administration (three different doses of microplastics of 500, 1000, and 2000 mg/kg/day) in ICR mice. For the investigation, we administered the microplastics orally for single- and 28-day repeated. Then, the histological and clinical pathology evaluations of the rodents were performed to evaluation of the toxicity test, and Raman spectroscopy was used to directly confirm the presence of polyethylene microplastics. In the single oral dose toxicity experiments, there were no changes in body weight and necropsy of the microplastics-treated group compared with that of controls. However, a histopathological evaluation revealed that inflammation from foreign bodies was evident in the lung tissue from the 28-day repeated oral dose toxicity group. Moreover, polyethylene microplastics were detected in the lung, stomach, duodenum, ileum, and serum by Raman spectroscopy. Our results corroborated the findings of lung inflammation after repeated oral administration of polyethylene microplastics. This study provides evidence of microplastic-induced toxicity following repeated exposure to mice.
Spinal cord injury (SCI) interferes with the normal function of the autonomic nervous system by blocking circuits between the sensory and motor nerves. Although many studies focus on functional recovery after neurological injury, effective neuroregeneration is still being explored. Recently, extracellular vesicles such as exosomes have emerged as cell-free therapeutic agents owing to their ability of cell-to-cell communication. In particular, exosomes released from mesenchymal stem cells (MSCs) have the potential for tissue regeneration and exhibit therapeutic effectiveness in neurological disorders. In this study, we isolated exosomes from human epidural adipose tissue-derived MSCs (hEpi AD–MSCs) using the tangential flow filtration method. The isolated exosomes were analyzed for size, concentration, shape, and major surface markers using nanoparticle tracking analysis, transmission electron microscopy, and flow cytometry. To evaluate their effect on SCI recovery, hEpi AD–MSC exosomes were injected intravenously in SCI-induced rats. hEpi AD–MSC exosomes improved the locomotor function of SCI-induced rats. The results of histopathological and cytokine assays showed that hEpi AD–MSC exosomes regulated inflammatory response. Genetic profiling of the rat spinal cord tissues revealed changes in the expression of inflammation-related genes after exosome administration. Collectively, hEpi AD–MSC exosomes are effective in restoring spinal functions by reducing the inflammatory response.
Chronic allergic inflammatory skin disease—atopic dermatitis (AD)—is characterized by eczema, pruritus, xeroderma, and lichenification. Psychological stress is one cause of this disease; however, psychological stress will also result from the presence of AD symptoms. Previous studies have shown that psychological stress triggers neuroinflammation in the brain, where microRNAs (miRNAs) in the neuronal exosomes (nEVs) were analyzed to identify the composition of the miRNAs in the nEVs and how they were altered by AD. In this study, the AD model was induced by treatment with 2,4-dinitrochlorobenzene (DNCB). The expression patterns of neuroinflammation markers, such as brain-derived neurotrophic factor, cyclooxygenase-2, and glial fibrillary acidic protein, were subsequently evaluated over time. Among these groups, there was a significant difference in DNCB 14 days expression compared with the control; therefore, nEVs were isolated from serum and next-generation sequencing was performed. The results demonstrate that 9 miRNAs were upregulated and 16 were downregulated in the DNCB 14 days compared with the control. Previous studies have shown that some of these miRNAs are associated with stress and stress-induced depression, which suggests that the miRNAs in nEVs may also be stress-related biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.