BackgroundSquamous cell carcinomas (SCC) account for approximately 30% of non-small cell lung cancer. Investigation of the mechanism of invasion and metastasis of lung SCC will be of great help for the development of meaningful targeted therapeutics. This study is intended to understand whether the activation of Hedgehog (Hh) pathway is involved in lung SCC, and whether activated Hh signaling regulates metastasis through epithelial-mesenchymal transition (EMT) in lung SCC.MethodsTwo cohorts of patients with lung SCC were studied. Protein expression was examined by immunohistochemistry, Western blot, or immunofluorescence. Protein expression levels in tissue specimens were scored and correlations were analyzed. Vismodegib and a Gli inhibitor were used to inhibit Shh/Gli activity, and recombinant Shh proteins were used to stimulate the Hh pathway in lung SCC cell lines. Cell migration assay was performed in vitro.ResultsShh/Gli pathway components were aberrantly expressed in lung SCC tissue samples. Gli1 expression was reversely associated with the expression of EMT markers E-Cadherin and β-Catenin in lung SCC specimens. Inhibition of the Shh/Gli pathway suppressed migration and up-regulated E-Cadherin expression in lung SCC cells. Stimulation of the pathway increased migration and down-regulated E-Cadherin expression in lung SCC cells.ConclusionsOur results suggested that the Shh/Gli pathway may be critical for lung SCC recurrence, metastasis and resistance to chemotherapy. Inhibition of the Shh/Gli pathway activity/function is a potential therapeutic strategy for the treatment of lung SCC patients.
Similarly to the Wnt protein palmitoyltransferase, porcupine (PPN) is essential to the activation of the Wnt/β-catenin signaling pathway. However, little is known about the role of PPN activity in human gastric cancer, one of the most common causes of cancer-related mortality. Real-time quantitative PCR was used to detect the expression levels of PPN in paired gastric cancer tissues. Cell proliferation, migration and invasion assays were performed following treatment using a newly developed small molecule PPN inhibitor (inhibitors of Wnt production, IWP-2) in the gastric cancer MKN28 cell line. Expression of downstream target genes and transcriptional activity of the Wnt/β-catenin signaling pathway were examined following IWP-2 treatment in MKN28. We identified that PPN was overexpressed in human gastric cancer tissue samples and cell lines. Following treatment of the gastric cancer cell line MKN28 with IWP-2, we detected that IWP-2 decreased MKN28 cell proliferation, migration and invasion, and elevated caspase 3/7 activity. Further analysis demonstrated that IWP-2 downregulated the transcriptional activity of the Wnt/β-catenin signaling pathway and downregulated the expression levels of downstream Wnt/β-catenin target genes in MKN28 cells. As current Wnt pathway-targeting strategies used for anticancer therapy have mainly focused on Wnt-receiving cells, our data shed light on the potential use of Wnt palmitoyltransferase PPN inhibitors to abrogate Wnt production in Wnt-producing cells, thus providing a potential therapeutic option for gastric cancer.
The HSulf-1 gene encodes an extracellular 6-O-endosulfatase and regulates the sulfation status of heparan sulfate proteoglycans (HSPG). We have demonstrated that promoter hypermethylation is correlated with the HSulf-1 silencing in gastric cancer. To investigate the functional importance of HSulf-1 silencing in gastric cancer, we restored HSulf-1 expression in the gastric cancer cell line MKN28, which lacks endogenous HSulf-1. Following restoration of expression, HSulf-1 inhibited cell proliferation, motility, and invasion in vitro, as well as significantly suppressing the MKN28 xenograft model (P < 0.05). No noticeable changes in proliferation and motility were observed following restoration of HSulf-1 in another gastric cancer cell line, namely AGS cells. Interestingly, in MKN28 cells, which have been reported to be dependent on extracellular Wnt signaling, we found that HSulf-1 inhibited the transcriptional activity of the Wnt ⁄ b-catenin pathway and downregulated its targeted genes. Conversely, in AGS cells, in the constitutive Wnt ⁄ b-catenin pathway is active, HSulf-1 had no effect on the activity of the Wnt ⁄ b-catenin pathway. Furthermore, transfection of Wnt3a cDNA or b-catenin shRNA resulted in rescue or enhancement, respectively, of the effects of HSulf-1 in MKN28 cells. Furthermore, HSPG epitope analysis confirmed that HSulf-1 affected the structure of heparan sulfate on the cell surface. Together, the results of the present study suggest that extracellular HSulf-1 may function as a negative regulator of proliferation and invasion in gastric cancer by suppressing Wnt ⁄ b-catenin signaling at the cell surface. (Cancer Sci 2011; 102: 1815-1821 G astric cancer is the second most common cause of cancerrelated deaths worldwide.(1,2) Understanding the mechanisms involved in gastric tumorigenesis and metastasis is important for the development of new effective therapeutic agents.The HSulf-1 gene, characterized as Human ortholog of Qsulf-1, can hydrolyze the sulfate ester bonds of heparan sulfate proteoglycans (HSPG), leading to removal of the sulfate at the 6-O position of glucosamine. (3,4) It is believed that changes in the sulfation status of HSPG can affect their interactions with signaling molecules and therefore modulate signal transduction. (3,(5)(6)(7)(8)
Cyclin B2 (CCNB2), a member of the cyclin protein family, has been found to be up-regulated in human cancers. To evaluate the potential use of circulating CCNB2 in serum in cancer surveillance, we examined relative expression levels of serum circulating CCNB2 mRNA in 103 cancer patients, 19 normal controls, and 40 benign disease patients using real-time quantitative reverse transcriptase polymerase chain reaction. We found that the relative expression level of circulating CCNB2 mRNA in cancer patients was significantly higher (p<0.0001) than that in normal controls and benign diseases group. Circulating CCNB2 mRNA level was significantly (p<0.001) correlated with cancer stage and metastasis status. Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) of 0.87 and 0.83 (p<0.05) in identifying cancer patients' metastasis status in lung and digestive tract cancer, respectively. Moreover, we observed that expression levels of circulating CCNB2 mRNA in cancer patients significantly decreased (p=0.0084) after their therapeutic treatments. These data suggest that detection of serum circulating CCNB2 mRNA may have potential clinical applications in screening and monitoring of metastasis and therapeutic treatments.
BackgroundEMX2 is a human orthologue of the Drosophila empty spiracles homeobox gene that has been implicated in embryogenesis. Recent studies suggest possible involvement of EMX2 in human cancers; however, the role of EMX2 in carcinogenesis needs further exploration.ResultsIn this study, we reported that down-regulation of EMX2 expression was significantly correlated with EMX2 promoter hypermethylation in gastric cancer. Restoring EMX2 expression using an adenovirus delivery system in gastric cancer cell lines lacking endogenous EMX2 expression led to inhibition of cell proliferation and Wnt signaling pathway both in vitro and in a gastric cancer xenograft model in vivo. In addition, we observed that animals treated with the adenoviral EMX2 expression vector had significantly better survival than those treated with empty adenoviral vector.ConclusionOur study suggests that EMX2 is a putative tumor suppressor in human gastric cancer. The adenoviral-EMX2 may have potential as a novel gene therapy for the treatment of patients with gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.