Inflammatory bowel disease (IBD) is a chronic, inflammatory, and autoimmune disorder. The pathogenesis of IBD is not yet clear. Studies have shown that the imbalance between T helper 17 (Th17) and regulatory T (Treg) cells, which differentiate from CD4+ T cells, contributes to IBD. Th17 cells promote tissue inflammation, and Treg cells suppress autoimmunity in IBD. Therefore, Th17/Treg cell balance is crucial. Some regulatory factors affecting the production and maintenance of these cells are also important for the proper regulation of the Th17/Treg balance; these factors include T cell receptor (TCR) signaling, costimulatory signals, cytokine signaling, bile acid metabolites, and the intestinal microbiota. This article focuses on our understanding of the function and role of the balance between Th17/Treg cells in IBD and these regulatory factors and their clinical significance in IBD.
Gut microbiota (GM) dysbiosis and bile acid (BA) metabolism disorder play an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Probiotics had a beneficial effect on NAFLD, but further study is needed to explore probiotics as a potential therapeutic agent to NAFLD. The aim of this study was to investigate the regulatory effect of probiotics on gut microbiota in NAFLD rats and to explore the possible mechanism of probiotics regulating the bile acid receptor farnesoid X receptor/growth factor 15 (FXR/FGF15) signaling pathway in rats. We established a rat model of NAFLD fed with a high-fat diet (HFD) for 14 weeks, which was given different interventions (312 mg/kg/day probiotics or 10 mg/kg/day atorvastatin) from the 7th week. Serum lipids and total bile acids (TBA) were biochemically determined; hepatic steatosis and lipid accumulation were evaluated with HE staining. The expression levels of FXR, FGF15 mRNA, and protein in rat liver were detected. 16S rDNA was used to detect the changes of gut microbiota in rats. Compared with the HFD group, probiotics and atorvastatin significantly reduced serum lipids and TBA levels. And probiotics increased dramatically the expression of FXR, FGF15 mRNA, and protein in the liver. But there were no significant changes in the atorvastatin group. Probiotics and atorvastatin can upregulate the diversity of gut microbiota and downregulate the abundance of pathogenic bacteria in NAFLD model rats. In summary, probiotics alleviated NAFLD in HFD rats via the gut microbiota/FXR/FGF15 signaling pathway.
With the continuous improvement of living standards but the lack of exercise, aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over society. Studies have found that metabolic disorders are near related to glucose, lipid metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also regulate glucose and lipid metabolism by controlling metabolism-related genes, such as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and FGF21 receptor agonists are gradually being valued and could become a treatment approach for aging-associated metabolic diseases. However, the mechanism by which FGF21 achieves curative effects is still not known. This review aims to interpret the interactive influence between FGF21, aging, and metabolic diseases and delineate the pharmacology of FGF21, providing theoretical support for further research on FGF21.
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.