Chip manufacturers provide the Thermal Design Power (TDP) for a specific chip. The cooling solution is designed to dissipate this power level. But because TDP is not necessarily the maximum power that can be applied, chips are operated with Dynamic Thermal Management (DTM) techniques. To avoid excessive triggers of DTM, usually, system designers also use TDP as power constraint. However, using a single and constant value as power constraint, e.g., TDP, can result in significant performance losses in homogeneous and heterogeneous manycore systems. Having better power budgeting techniques is a major step towards dealing with the dark silicon problem. This paper presents a new power budget concept, called Thermal Safe Power (TSP), which is an abstraction that provides safe power and power density constraints as a function of the number of simultaneously active cores. Executing cores at any power consumption below TSP ensures that DTM is not triggered. TSP can be computed offline for the worst cases, or online for a particular mapping of cores. TSP can also serve as a fundamental tool for guiding task partitioning and core mapping decisions, specially when core heterogeneity or timing guarantees are involved. Moreover, TSP results in dark silicon estimations which are less pessimistic than estimations using constant power budgets.
Abstract.We consider the problem of job scheduling on a variable voltage processor with d discrete voltage/speed levels. We give an algorithm which constructs a minimum energy schedule for n jobs in O(dn log n) time. Previous approaches solve this problem by first computing the optimal continuous solution in O(n 3 ) time and then adjusting the speed to discrete levels. In our approach, the optimal discrete solution is characterized and computed directly from the inputs. We also show that O(n log n) time is required, hence the algorithm is optimal for fixed d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.