Differential mortality rates remain a significant health disparity in the United States, suggesting the need to investigate novel potential molecular markers associated with mortality. Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are lipid-bound vesicles secreted by cells into the circulation. EVs mediate intercellular communication by shuttling functional signaling molecules as cargo. EV characteristics by race in the context of mortality risk factors have not been described. We isolated plasma EVs from a cross-sectional cohort of African Americans (AA) and whites and found no significant differences in EV size, distribution or concentration between race or by sex. However, EV cargo showed increased levels of phospho-p53, total p53, cleaved caspase 3, ERK1/2 and phospho-AKT in white individuals compared to AAs. phospho-IGF-1R levels were significantly higher in females compared to males. EV concentration was significantly associated with several clinical mortality risk factors: high-sensitivity C-reactive protein (hsCRP), homeostatic model assessment of insulin resistance (HOMA-IR), alkaline phosphatase, body mass index, waist circumference and pulse pressure. The association of EV proteins with mortality markers were dependent on race. These data suggest that EV cargo can differ by race and sex and is associated with mortality risk factors.
Mesolimbic dopamine transmission is dysregulated in multiple psychiatric disorders, including addiction. Previous studies found that the endogenous GABAergic steroid (3α,5α)-3-hydroxy-5-pregnan-20-one (allopregnanolone) modulates dopamine levels in the nucleus accumbens and prefrontal cortex. As allopregnanolone is a potent positive allosteric modulator of GABAA receptors, and GABAA receptors can regulate dopamine release, we hypothesized that allopregnanolone would reduce phasic fluctuations in mesolimbic dopamine release that are important in learning and reward processing. We used fast-scan cyclic voltammetry in anesthetized female and male rats to measure dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area, before and after administration of allopregnanolone. Allopregnanolone (7.5–25 mg/kg, IP) reduced evoked dopamine release in both male and female rats, compared to β-cyclodextrin vehicle. In males, all doses of allopregnanolone decreased dopamine transmission, with stronger effects at 15 and 25 mg/kg allopregnanolone. In females, 15 and 25 mg/kg allopregnanolone reduced dopamine release, while 7.5 mg/kg allopregnanolone was no different from vehicle. Since allopregnanolone is derived from progesterone, we hypothesized that high endogenous progesterone levels would result in lower sensitivity to allopregnanolone. Consistent with this, females in proestrus (high progesterone levels) were less responsive to allopregnanolone than females in other estrous cycle stages. Furthermore, 30 mg/kg progesterone reduced evoked dopamine release in males, similar to allopregnanolone. Our findings confirm that allopregnanolone reduces evoked dopamine release in both male and female rats. Moreover, sex and the estrous cycle modulated this effect of allopregnanolone. These results extend our knowledge about the pharmacological effects of neurosteroids on dopamine transmission, which may contribute to their therapeutic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.