The promiscuous CD11b/CD18 (Mac-1) integrin has important roles in regulating many immunologic functions such as leukocyte adhesion and emigration from the bloodstream via interactions with the endothelial ligands ICAM-1 and ICAM-2, iC3b-mediated phagocytosis, and apoptosis. However, the mechanisms for Mac-1 inside-out activation have remained poorly understood. Phosphorylation of integrin cytoplasmic domains is emerging as an important mechanism of regulating integrin functions. Here, we have stud-
We present a mechanism for agonist-promoted alpha(2A)-adrenergic receptor (alpha(2A)-AR) activation based on structural, pharmacological, and theoretical evidence of the interactions between phenethylamine ligands and alpha(2A)-AR. In this study, we have: 1) isolated enantiomerically pure phenethylamines that differ both in their chirality about the beta-carbon, and in the presence/absence of one or more hydroxyl groups: the beta-OH and the catecholic meta- and para-OH groups; 2) used [(3)H]UK-14,304 [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine; agonist] and [(3)H]RX821002 [2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline; antagonist] competition binding assays to determine binding affinities of these ligands to the high- and low-affinity forms of alpha(2A)-AR; 3) tested the ability of the ligands to promote receptor activation by measuring agonist-induced stimulation of [(35)S]GTPgammaS binding in isolated cell membranes; and 4) used automated docking methods and our alpha(2A)-AR model to predict the binding modes of the ligands inside the alpha(2A)-AR binding site. The ligand molecules are sequentially missing different functional groups, and we have correlated the structural features of the ligands and ligand-receptor interactions with experimental ligand binding and receptor activation data. Based on the analysis, we show that structural rearrangements in transmembrane helix (TM) 5 could take place upon binding and subsequent activation of alpha(2A)-AR by phenethylamine agonists. We suggest that the following residues are important in phenethylamine interactions with alpha(2A)-AR: Asp113 (D(3.32)), Val114 (V(3.33)), and Thr118 (T(3.37)) in TM3; Ser200 (S(5.42)), Cys201 (C(5.43)), and Ser204 (S(5.46)) in TM5; Phe391 (F(6.52)) and Tyr394 (Y(6.55)) in TM6; and Phe411 (F(7.38)) and Phe412 (F(7.39)) in TM7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.