IntroductionThe immune system plays a major role in cancer progression. In solid tumors, 5-40 % of the tumor mass consists of tumor-associated macrophages (TAMs) and there is usually a correlation between the number of TAMs and poor prognosis, depending on the tumor type. TAMs usually resemble M2 macrophages. Unlike M1-macrophages which have pro-inflammatory and anti-cancer functions, M2-macrophages are immunosuppressive, contribute to the matrix-remodeling, and hence favor tumor growth. The role of TAMs is not fully understood in breast cancer progression.MethodsMacrophage infiltration (CD68) and activation status (HLA-DRIIα, CD163) were evaluated in a large cohort of human primary breast tumors (562 tissue microarray samples), by immunohistochemistry and scored by automated image analysis algorithms. Survival between groups was compared using the Kaplan-Meier life-table method and a Cox multivariate proportional hazards model. Macrophage education by breast cancer cells was assessed by ex vivo differentiation of peripheral blood mononuclear cells (PBMCs) in the presence or absence of breast cancer cell conditioned media (MDA-MB231, MCF-7 or T47D cell lines) and M1 or M2 inducing cytokines (respectively IFN-γ, IL-4 and IL-10). Obtained macrophages were analyzed by flow cytometry (CD14, CD16, CD64, CD86, CD200R and CD163), ELISA (IL-6, IL-8, IL-10, monocyte colony stimulating factor M-CSF) and zymography (matrix metalloproteinase 9, MMP-9).ResultsClinically, we found that high numbers of CD163+ M2-macrophages were strongly associated with fast proliferation, poor differentiation, estrogen receptor negativity and histological ductal type (p<0.001) in the studied cohort of human primary breast tumors. We demonstrated ex vivo that breast cancer cell-secreted factors modulate macrophage differentiation toward the M2 phenotype. Furthermore, the more aggressive mesenchymal-like cell line MDA-MB231, which secretes high levels of M-CSF, skews macrophages toward the more immunosuppressive M2c subtype.ConclusionsThis study demonstrates that human breast cancer cells influence macrophage differentiation and that TAM differentiation status correlates with recurrence free survival, thus further emphasizing that TAMs can similarly affect therapy efficacy and patient outcome.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-015-0621-0) contains supplementary material, which is available to authorized users.
Background:Cdc20 is an essential component of cell division and responsible for anaphase initiation regulated by securin degradation. Cdc20 function is strongly regulated by the spindle assembly checkpoint to ensure the timely separation of sister chromatids and integrity of the genome. We present the first results on Cdc20 in a large clinical breast cancer material.Methods:The study was based on 445 breast cancer patients with up to 20 years of follow-up (mean 10.0 years). DNA content was determined by image cytometry on cell imprints, and Cdc20 and securin immunohistochemistry on tissue microarrays of breast cancer tissue.Results:In our results, high Cdc20 and securin expression was associated with aneuploid DNA content. In prognostic analyses, high Cdc20 immunoexpression alone and in combination with high securin immunoexpression indicated aggressive course of disease and up to 6.8-fold (P<0.001) risk of breast cancer death. Particularly, high Cdc20 and securin immunoexpression identified a patient subgroup with extremely short, on average 2.4 years, breast cancer survival and triple-negative breast cancer (TNBC) subtype.Conclusions:We report for the first time the association of high Cdc20 and securin immunoexpression with extremely poor outcome of breast cancer patients. Our experience indicates that Cdc20 and securin are promising candidates for clinical applications in breast cancer prognostication, especially in the challenging prognostic decisions of TNBC.
Purpose Tumor inflammatory response was evaluated as a prognostic feature in triple-negative breast cancer (TNBC) and compared with the clinical prognosticators of breast cancer and selected biomarkers of cancer cell proliferation. Methods TNBC patients (n = 179) with complete clinical data and up to 18-year follow-up were obtained from Auria biobank,
Gastric cancer is traditionally divided into intestinal and diffuse histological subtypes, but recent molecular analyses have led to novel classification proposals based on genomic alterations. While the intestinal- and diffuse-type tumours are distinguishable from each other at the molecular level, intestinal-type tumours have more diverse molecular profile. The technology required for comprehensive molecular analysis is expensive and not applicable for routine clinical diagnostics. In this study, we have used immunohistochemistry and in situ hybridisation in molecular classification of gastric adenocarcinomas with an emphasis on the intestinal subtype. A tissue microarray consisting of 244 gastric adenocarcinomas was constructed, and the tumours were divided into four subgroups based on the presence of Epstein-Barr virus, TP53 aberrations and microsatellite instability. The intestinal- and diffuse-type tumours were separately examined. The distribution of EGFR and HER2 gene amplifications was studied in the intestinal-type tumours. Epstein-Barr virus positive intestinal-type tumours were more common in male patients (p = 0.035) and most often found in the gastric corpus (p = 0.011). The majority of the intestinal-type tumours with TP53 aberrations were proximally located (p = 0.010). All tumours with microsatellite instability showed intestinal-type histology (p = 0.017) and were associated with increased overall survival both in the univariate (p = 0.040) and multivariate analysis (p = 0.015). In conclusion, this study shows that gastric adenocarcinomas can be classified into biologically and clinically different subgroups by using a simple method also applicable for clinical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.