PTH activates a number of different signaling pathways by binding to a single receptor in bone and kidney. Recent studies demonstrate the involvement of novel factors as well as additional roles for previously identified downstream factors of PTH.
Matrix metalloproteinase-13 (MMP-13) plays a critical role in parathyroid hormone (PTH)-induced bone resorption. PTH acts via protein kinase A (PKA) to phosphorylate and stimulate the transactivation of Runx2 for MMP-13 promoter activation. We show here that PTH stimulated Runx2 phosphorylation in rat osteoblastic cells. Runx2 was phosphorylated on serine 28 and threonine 340 after 8-bromo cyclic adenosine mono phosphate (8-Br-cAMP) treatment. We further demonstrate that in the presence of 8-Br-cAMP, the wild-type Runx2 construct stimulated MMP-13 promoter activity, while the Runx2 construct having mutations at three phosphorylation sites (S28, S347 and T340) was unable to stimulate MMP-13 promoter activity. Thus, we have identified the Runx2 phosphorylation sites necessary for PKA stimulated MMP-13 promoter activation and this event may be critical for bone remodeling.
PTH regulates transcription of a number of genes involved in bone remodeling and calcium homeostasis. We have previously shown that the matrix metalloproteinase-13 (MMP-13) gene is induced by PTH in osteoblastic cells as a secondary response through the protein kinase A pathway requiring the runt domain and activator protein 1 binding sites of the proximal promoter. Here, we investigated the changes PTH causes in histone acetylation in this region (which contains the only deoxyribonuclease-hypersensitive sites in the promoter) leading to MMP-13 gene activation in these cells. Chromatin immunoprecipitation experiments revealed that PTH rapidly increased histone H4 acetylation followed by histone H3 acetylation associated with the different regions of the MMP-13 proximal promoter. The hormone also stimulated p300 histone acetyl transferase activity and increased p300 bound to the MMP-13 proximal promoter, and this required protein synthesis. Upon PTH treatment, Runx2, already bound to the runt domain site of the MMP-13 promoter, interacted with p300, which then acetylated histones H4 and H3. The knockdown of either Runx2 or p300 by RNA interference reduced PTH-induced acetylation of histones H3 and H4, association of p300 with the MMP-13 promoter, and resultant MMP-13 gene transcription. Overall, our studies suggest that without altering the gross chromatin structure, PTH stimulates acetylation of histones H3 and H4 via recruitment of p300 to Runx2 bound to the MMP-13 promoter, resulting in gene activation. This work establishes the molecular basis of transcriptional regulation in osteoblasts by PTH, a hormone acting through a G-protein coupled receptor.
Parathyroid hormone (PTH) regulates the transcription of many genes involved in bone remodeling in osteoblasts. One of these genes is matrix metalloproteinase-13 (MMP-13), which is involved in bone remodeling and early stages of endochondral bone formation. We have previously shown that Mmp-13 gene expression is highly induced by PTH treatment in osteoblastic UMR 106-01 cells, as well as primary osteoblasts. Here, we show that p300/CBP-associated factor (PCAF), in addition to p300 and Runx2, is required for PTH activation of Mmp-13 transcription. PCAF was increasingly recruited to the MMP-13 proximal promoter region after PTH treatment, and this was associated with an increase in RNA polymerase II recruitment and histone acetylation. In addition, PTH treatment increased the acetylation of PCAF, a process that required p300. Knockdown of PCAF, p300, or Runx2 by siRNA decreased Mmp-13 mRNA expression after PTH treatment in both UMR 106-01 cells and primary osteoblasts. We found that there is a mutual dependence between p300 and PCAF to be recruited to the Mmp-13 promoter after PTH treatment. In promoter-reporter assays, p300 and PCAF had an additive effect on PTH stimulation of MMP-13 promoter activity, and this required their histone acetyltransferase activity. Our findings demonstrate that PCAF acts downstream of PTH signaling as a transcriptional coactivator that is required for PTH stimulation of MMP-13 transcription. PCAF cooperates with p300 and Runx2 to mediate PTH activation of MMP-13 transcription. PTH2 is a peptide hormone that plays a central role in regulating serum ion concentrations. Secreted from the parathyroid glands in response to low serum calcium levels, PTH has two primary sites of action, bone and kidney. In bone, PTH stimulates the release of calcium and phosphate ions from the bone mineral matrix, leading to bone degradation such that PTH is classically known as a catabolic agent in bone remodeling.However, when administered intermittently, PTH has an anabolic effect that leads to increased bone mass. Binding of PTH to its receptor, PTH1R, on the surface of osteoblasts leads to the activation of many different signaling pathways, including protein kinase A (PKA)-and protein kinase C (PKC)-dependent pathways, as well as calcium ion channels (reviewed in Ref. 1). This eventually leads to a significant change in gene expression in osteoblasts (2). Microarray analyses from our laboratory demonstrated that the catabolic effect of PTH on bone predominantly occurs through PKA-dependent signaling (3).MMP-13 is a collagenase that is expressed in chondrocytes, osteoblasts, and osteocytes. It plays an essential role in early stages of endochondral bone formation, and its expression is increased in pathological conditions such as osteoarthritis, rheumatoid arthritis, and tumor metastasis (4 -6). Mmp-13 gene expression is highly stimulated by PTH in osteoblastic UMR 106-01 cells (7), as well as in vivo (8). The relevance of MMP-13 and PTH has been demonstrated in vivo by the decreased expression of MMP-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.