Direct radioiodination of peptides using copper-mediated iododeboronation is a promising radiosynthetic method for solving issues of classical direct radiolabeling, such as toxicity of the organotin precursor (iododestannylation) or formation of radio byproducts (by electrophilic iodination of a tyrosine residue). However, the parameters for optimizing the reaction conditions for various peptides are not completely understood. In particular, considering peptide solubility, the effects of water-containing solvents on labeling efficiency should be thoroughly investigated. Herein, we describe the effect of water on copper-mediated radioiododeboronation and the key factors for ensuring the successful radiolabeling of small molecules and peptides in water–organic solvents. 125I-labeled substrates containing peptides ([125I]m/p-IBTA) were obtained with high radiochemical conversions (RCCs: >95%) using an alcohol solvent, and a decrease in these RCCs was observed with increasing water content in the methanol solvent. Additionally, when using water–methanol solvents, a difference in RCC due to the substituent effect was also observed. However, the RCCs can be improved without the use of other additives by adjusting the copper catalyst and time of the labeling reaction or by utilizing substituent effects. This study contributes to the improvement of the design of boronic peptide precursors and radiolabeling protocols using copper-mediated iododeboronation.
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for diagnostic agents. In this study, the EphA2-230-1 monoclonal antibody (EphA2-230-1) was labeled with [ 111 In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with [ 111 In]In. [ 111 In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, biodistribution, and SPECT/computed tomography (CT) studies. The cellular uptake ratio of [ 111 In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution study, a high uptake of [ 111 In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The superior accumulation of [ 111 In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [ 111 In]In-BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.