The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.
Land plants evolved xylem vessels to conduct water and nutrients, and to support the plant. Microarray analysis with a newly established Arabidopsis in vitro xylem vessel element formation system and promoter analysis revealed the possible involvement of some plant-specific NAC-domain transcription factors in xylem formation. VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 can induce transdifferentiation of various cells into metaxylem-and protoxylem-like vessel elements, respectively, in Arabidopsis and poplar. A dominant repression of VND6 and VND7 specifically inhibits metaxylem and protoxylem vessel formation in roots, respectively. These findings suggest that these genes are transcription switches for plant metaxylem and protoxylem vessel formation. Xylem vessels, a conductive component of the vascular tissues in plants, are found throughout the plant body. To colonize the land, plants have evolutionarily developed different types of xylem vessels that function in the long-distance transport of water, various nutrients, and signaling molecules throughout their life (Raven et al. 1999). Two types of vessels mature in characteristic positions within protoxylem and metaxylem of the primary xylem tissue that differentiates from the procambium during the early ontogeny of a plant. The protoxylem vessels, which commonly have annular and spiral thickenings, mature before the surrounding organs have elongated. These are frequently destroyed by the extension of the surrounding tissues. The metaxylem vessels, which usually have reticulate and pitted thickenings, mature after the surrounding organs complete their growth. In contrast to protoxylem vessels, they are not destroyed, and constitute the water-conducting tubes of the mature plant (Esau 1977). In Arabidopsis roots, two protoxylem vessels are typically formed at the outermost position of the vascular system, between which three to four metaxylem vessels develop (Supplementary Fig. S1).Recent forward genetic and molecular biological approaches have revealed several aspects of xylem formation that are affected by several key genes (Ye 2002;Fukuda 2004). These genes are related to auxin transport and signaling, and include PINFORMED1 (Gälweiler et al. 1998) and MONOPTEROS (Przemeck et al. 1996) . However, the hierarchical genetic control of differentiation of individual xylem cells is still poorly understood. In this study, we identified VND6 and VND7, which belong to plant-specific transcription factors, NAC-domain proteins that can induce transdifferentiation of various types of cells into metaxylemand protoxylem-like vessel elements, respectively. It is suggested that VND6 and VND7 are transcription switches for plant metaxylem and protoxylem vessel formation, respectively. Results and DiscussionWe have uncovered an expression profile of 9000 genes during xylem vessel element differentiation in an in vitro Zinnia cell culture (Demura et al. 2002). To gain an expression profile of xylem cell-differentiation-related genes in Arabidopsis, we established an in vitro ...
Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte-dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post-transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes.
The Arabidopsis thaliana NAC domain transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) acts as a master regulator of xylem vessel differentiation. To understand the mechanism by which VND7 regulates xylem vessel differentiation, we used a yeast two-hybrid system to screen for proteins that interact with VND7 and identified cDNAs encoding two NAC domain proteins, VND-INTERACTING1 (VNI1) and VNI2. Binding assays demonstrated that VNI2 effectively interacts with VND7 and the VND family proteins, VND1-5, as well as with other NAC domain proteins at lower affinity. VNI2 is expressed in both xylem and phloem cells in roots and inflorescence stems. The expression of VNI2 overlaps with that of VND7 in elongating vessel precursors in roots. VNI2 contains a predicted PEST motif and a C-terminally truncated VNI2 protein, which lacks part of the PEST motif, is more stable than full-length VNI2. Transient reporter assays showed that VNI2 is a transcriptional repressor and can repress the expression of vessel-specific genes regulated by VND7. Expression of C-terminally truncated VNI2 under the control of the VND7 promoter inhibited the normal development of xylem vessels in roots and aerial organs. These data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.
SummaryThe Arabidopsis thaliana NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), plays a pivotal role in regulating the differentiation of root protoxylem vessels. In order to understand the mechanisms underscoring the function of VND7 in vessel differentiation in more detail, we conducted extensive molecular analyses in yeast (Saccharomyces cerevisiae), Arabidopsis, and Nicotiana tabacum L. cv. Bright Yellow 2 (tobacco BY-2) cells. The transcriptional activation activity of VND7 was confirmed in yeast and Arabidopsis, and the C-terminal region was shown to be required for VND7 transcriptional activation. Expression of the C-terminus-truncated VND7 protein under the control of the native VND7 promoter resulted in inhibition of the normal development of metaxylem vessels in roots and vessels in aerial organs, as well as protoxylem vessels in roots. The expression pattern of VND7 overlapped that of VND2 to VND5 in most of the differentiating vessels. Furthermore, a yeast two-hybrid assay revealed the ability of VND7 to form homodimers and heterodimers with other VND proteins via their N-termini, which include the NAC domain. The heterologous expression of VND7 in tobacco BY-2 cells demonstrated that the stability of VND7 could be regulated by proteasome-mediated degradation. Together these data suggest that VND7 regulates the differentiation of all types of vessels in roots and shoots, possibly in cooperation with VND2 to VND5 and other regulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.