Introduction MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis.
The human toll-like receptor 4 (TLR4) pathway is activated in response to lipopolysaccharide (LPS), and subsequent signal transductions lead to the production of cytokines such as tumor necrosis factor-α (TNF-α) by innate immune cells. Defects in innate immune response may contribute to the overproduction of TNF-α leading to systemic inflammation and diseases. Thus, the innate immune response needs to be tightly regulated by elaborate mechanisms to control its onset and termination. LPS tolerance is a state of hyporesponsiveness to subsequent LPS challenge and is achieved by monocytic cells after prolonged exposure to LPS. In this report, kinetics of endotoxin-responsive microRNAs expression analysis revealed a unique pattern of gradual increase for miR-146a starting 4 h after LPS stimulation in THP-1 cells and continued up to 35-fold over 24 h. Conversely, TNF-α increased up to 4 h and then decreased gradually implicating a negative correlation with miR-146a progression. The characteristic up-regulation of miR-146a toward subsequent LPS challenge in THP-1 cells was studied. Strikingly, microRNA expression analysis during the tolerized state of THP-1 cells showed only miR-146a overexpression suggesting its important role in LPS tolerance. In addition, LPS tolerance was dependent on a LPS-priming dose and associated miR-146a up-regulation. LPS-tolerized cells were observed to regain responsiveness in TNF-α production 22 h after LPS removal correlating with a decrease in miR-146a level. Transfection of miR-146a into THP-1 cells mimicked LPS priming, whereas transfection of miR-146a inhibitor largely abolished LPS tolerance. Thus our studies demonstrated that miR-146a is critical for the in vitro monocytic cell-based endotoxin tolerance.
The GW182 RNA-binding protein was initially shown to associate with a specific subset of mRNAs and to reside within discrete cytoplasmic foci named GW bodies (GWBs). GWBs are enriched in proteins that are involved in mRNA degradation. Recent reports have shown that exogenously introduced human Argonaute-2 (Ago2) is also enriched in GWBs, indicating that RNA interference function may be somehow linked to these structures. In this report, we demonstrate that endogenous Ago2 and transfected small interfering RNAs (siRNAs) are also present within these same cytoplasmic bodies and that the GW182 protein interacts with Ago2. Disruption of these cytoplasmic foci in HeLa cells interferes with the silencing capability of a siRNA that is specific to lamin-A/C. Our data support a model in which GW182 and/or the microenvironment of the cytoplasmic GWBs contribute to the RNA-induced silencing complex and to RNA silencing.
Tetramethylpentadecane (TMPD, or commonly known as pristane)-induced lupus is a murine model of systemic lupus erythematosus (SLE). Renal disease and autoantibody production strictly depend on signaling through the interferon (IFN)-I receptor. The major source of IFN-I is immature monocytes bearing high levels of the surface marker Ly6C. Interferon production is mediated exclusively by signaling through TLR7 and the adapter protein MyD88. It is likely that endogenous TLR7 ligands such as components of small nuclear ribonucleoprotein complexes are involved in triggering disease. Lupus autoantibodies are produced in ectopic lymphoid tissue developing in response to TMPD. This model is well suited for examining links between dysregulated IFN-I production and the pathogenesis of human SLE, which like TMPD-lupus, is associated with high levels of IFN-I.
Objective To estimate the prevalence, types and sociodemographic and biobehavioral correlates of antinuclear antibodies (ANA) in the United States (U.S.). Methods Cross-sectional analysis of 4,754 individuals from the National Health and Nutrition Examination Survey (NHANES) 1999–2004. ANA by indirect immunofluorescence, including cellular staining patterns and specific autoantibody reactivities by immunoprecipitation in those with ANA. Results ANA prevalence in the U.S. population ages 12 years and older was 13.8% (95% CI, 12.2% to 15.5%). ANA increased with age (P = 0.01) and were more prevalent among females than males (17.8% vs. 9.6%, P < 0.001), with the female to male ratio peaking at 40–49 years of age. ANA prevalence was modestly higher in African Americans than whites (adjusted prevalence odds ratio [POR], 1.30; 95% CI, 1.00 to 1.70). Remarkably, ANA were less common in overweight and obese (adjusted POR, 0.74; 95% CI, 0.59 to 0.94) individuals than persons of normal weight. No significant associations were seen with education, family income, alcohol use, smoking history, serum levels of cotinine or C-reactive protein. In ANA-positive individuals, nuclear patterns were seen in 84.6%, cytoplasmic patterns in 21.8%, and nucleolar patterns in 6.1%, and the most common specific autoantibodies were anti-Ro (3.9%) and anti-Su (2.4%). Conclusion These findings suggest that over 32 million persons in the U.S. have ANA and the prevalence is higher among females, older individuals, African Americans and those with normal weight. These data will serve as a useful baseline for future investigations of predictors and changes in ANA prevalence over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.