The epidermal growth factor receptor directed antibody, cetuximab, is an effective clinical therapy for patients with colorectal, head and neck and non-small cell lung cancer patients particularly for those with KRAS and BRAF wild type cancers. Treatment in all patients is limited eventually by the development of acquired resistance but little is known about the underlying mechanism. Here we show, that activation of ERBB2 signaling, either through ERBB2 amplification or through heregulin upregulation, leads to persistent ERK 1/2 signaling and consequently cetuximab resistance. Inhibition of ERBB2 or disruption of ERBB2/ERBB3 heterodimerization restores cetuximab sensitivity in vitro and in vivo. A subset of colorectal cancer patients that exhibit either de novo or acquired resistance to cetuximab based therapy possess ERBB2 amplification or high levels of circulating heregulin. Collectively, these findings identify two distinct resistance mechanisms, both of which promote aberrant ERBB2 signaling, that mediate cetuximab resistance. Moreover, these results suggest that ERBB2 inhibitors, in combination with cetuximanb, represent a rational therapeutic strategy that should be assessed in cetuximab-resistant cancers.
This study strongly suggests that cisplatin plus etoposide and concurrent radiotherapy is more effective for the treatment of LS-SCLC than cisplatin plus etoposide and sequential radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.