Objectives We previously developed a model for projection of heat-related mortality attributable to climate change. The objective of this paper is to improve the fit and precision of and examine the robustness of the model. Methods We obtained daily data for number of deaths and maximum temperature from respective governmental organizations of Japan, Korea, Taiwan, the USA, and European countries. For future projection, we used the Bergen climate model 2 (BCM2) general circulation model, the Special Report on Emissions Scenarios (SRES) A1B socioeconomic scenario, and the mortality projection for the 65?-year-old age group developed by the World Health Organization (WHO). The heat-related excess mortality was defined as follows: The temperature-mortality relation forms a V-shaped curve, and the temperature at which mortality becomes lowest is called the optimum temperature (OT). The difference in mortality between the OT and a temperature beyond the OT is the excess mortality. To develop the model for projection, we used Japanese 47-prefecture data from 1972 to 2008. Using a distributed lag nonlinear model (two-dimensional nonparametric regression of temperature and its lag effect), we included the lag effect of temperature up to 15 days, and created a risk function curve on which the projection is based. As an example, we perform a future projection using the above-mentioned risk function. In the projection, we used 1961-1990 temperature as the baseline, and temperatures in the 2030s and 2050s were projected using the BCM2 global circulation model, SRES A1B scenario, and WHO-provided annual mortality. Here, we used the ''counterfactual method'' to evaluate the climate change 123Environ Health Prev Med (2014) 19:56-63 DOI 10.1007 impact; For example, baseline temperature and 2030 mortality were used to determine the baseline excess, and compared with the 2030 excess, for which we used 2030 temperature and 2030 mortality. In terms of adaptation to warmer climate, we assumed 0 % adaptation when the OT as of the current climate is used and 100 % adaptation when the OT as of the future climate is used. The midpoint of the OTs of the two types of adaptation was set to be the OT for 50 % adaptation. Results We calculated heat-related excess mortality for 2030 and 2050. Conclusions Our new model is considered to be better fit, and more precise and robust compared with the previous model.
The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2 • C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. Plain Language Summary Global warming changes the frequency, intensity, and spatial distribution of extreme events. We analyze computer simulations of river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves under past, present-day, and potential future climate conditions.
Responses to future changes in climatic and socio-economic conditions can be expected to vary between sectors and regions, reflecting differential sensitivity to these highly uncertain factors. A sensitivity analysis was conducted using a suite of impact models (for health, agriculture, biodiversity, land use, floods and forestry) across Europe with respect to changes in key climate and socio-economic variables. Depending on the indicators, aggregated grid or indicative site results are reported for eight rectangular sub-regions that together span Europe from northern Finland to southern Spain and from western Ireland to the Baltic States and eastern Mediterranean, each plotted as scenario-neutral impact response surfaces (IRSs). These depict the modelled behaviour of an impact variable in response to changes in two key explanatory variables. To our knowledge, this is the first time the IRS approach has been applied to changes in socio-economic drivers and over such large regions. The British Isles region showed the smallest sensitivity to both temperature and precipitation, whereas Central Europe showed the strongest responses to temperature and Eastern Europe to precipitation. Across the regions, sensitivity to temperature was lowest for the two indicators of river discharge and highest for Norway spruce productivity. Sensitivity to precipitation was lowest for intensive agricultural land use, maize and potato yields and Scots pine productivity, and highest for Norway spruce productivity. Under future climate projections, North-eastern Europe showed increases in yields of all crops and productivity of all tree species, whereas Central and East Europe showed declines. River discharge indicators and forest productivity (except Holm oak) were projected to decline over southern European regions. Responses were more sensitive to socio-economic than to climate drivers for some impact indicators, as demonstrated for heat-related mortality, coastal flooding and land use.Determining sectoral and regional sensitivity to climate and socio-economic change in Europe using impact...
In climate change research, future scenarios of greenhouse gas and air pollutant emissions generated by integrated assessment models (IAMs) are used in climate models (CMs) and earth system models to analyze future interactions and feedback between human activities and climate. However, the spatial resolutions of IAMs and CMs differ. IAMs usually disaggregate the world into 10–30 aggregated regions, whereas CMs require a grid-based spatial resolution. Therefore, downscaling emissions data from IAMs into a finer scale is necessary to input the emissions into CMs. In this study, we examined whether differences in downscaling methods significantly affect climate variables such as temperature and precipitation. We tested two downscaling methods using the same regionally aggregated sulfur emissions scenario obtained from the Asian-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. The downscaled emissions were fed into the Model for Interdisciplinary Research on Climate (MIROC). One of the methods assumed a strong convergence of national emissions intensity (e.g., emissions per gross domestic product), while the other was based on inertia (i.e., the base-year remained unchanged). The emissions intensities in the downscaled spatial emissions generated from the two methods markedly differed, whereas the emissions densities (emissions per area) were similar. We investigated whether the climate change projections of temperature and precipitation would significantly differ between the two methods by applying a field significance test, and found little evidence of a significant difference between the two methods. Moreover, there was no clear evidence of a difference between the climate simulations based on these two downscaling methods.
The impacts of climate change are apparent in various regions of the world. Even though climate change may have a positive effect, it is anticipated that there will be many severely negative effects on human and natural resources in the future. Therefore, in addition to the need for stronger promotion of mitigation policies, it is urgently necessary to study and implement adaptation policies over the longer term to prepare for the possible negative impact of climate change. To implement climate change adaptation measures rapidly in Japan, it would seem practical and effective to make good use of the various countermeasures already promoted by both the national and the local governments for many sectors such as disaster prevention, environmental management, food production, and protection of the nation's health. These countermeasures are considered to have potential for effecting climate change adaptation. This study, focusing on adaptation to climate change negative impacts, investigates to what extent the existing policies of the Tokyo Metropolitan Government could contribute to climate change adaptation, based on a comprehensive examination of targeted fields and indicators for which adaptation policies could be pursued. The results showed many of the existing policies could be useful for adaptation to climate change in many sectors. Furthermore, less than half of these policies need to take future climate change into account in order to contribute to climate change adaptation. This study proposes three basic steps that consider future climate change and local governmental propositions for the rapid implementation of adaptation policies in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.