Microscale combustion has potential application in a micro power generator. This paper studied the ignition and combustion behavior of individual graphite microparticles in a micro-combustor to explore the utilization of carbon-based fuels at the microscale system. The individual graphite microparticles inside the micro-combustor were ignited by a highly focused laser in an air flow with natural convection at atmospheric temperature and pressure. The results show that the ignition of graphite microparticles was heterogeneous. The particle diameter had a small weak effect on ignition delay time and threshold ignition energy. The micro-combustor wall heat losses had significant effects on the ignition and combustion. During combustion, flame instability, photophoresis, repetitive extinction and reignition were identified. The flame structure was asymmetric, and the fluctuation of flame front and radiation intensity showed combustion instability. Photophoretic force pushed the graphite away from the focal point and resulted in extinction. Owing to large wall heat loss, the flame quickly extinguished. However, the graphite was inductively reignited by laser.
Metal magnesium (Mg) fuels have been widely used in rocket propellants. The combustion study on individual Mg microparticles is crucial to the in-depth unveiling of the combustion mechanism of Mg-based propellants. In this paper, a new experimental setup was proposed to directly observe the combustion of individual micron-sized Mg particles, based on laser ignition and microscopic high-speed cinematography. The combustion process of individual Mg microparticles could be directly and clearly observed by the apparatus at high temporal and spatial resolutions. Individual Mg microparticles took gas phase combustion, and mainly underwent four stages: expansion, melting, gasification, ignition, and combustion. The ignition delay time and total combustion time had an exponential decay on the particle diameter, and they had a linear decay on the ignition power density. The melting took a dominant role in the whole burnout time. The gas-phase combustion flame seemed thick, inhomogeneous, and ring-like structure. The combustion model of individual Mg microparticles was built through combining the experimental results with the SEM, XRD, XPS, and EDS analysis of original samples and combustion residues. This study will be beneficial to understand the combustion process and reveal the combustion mechanism of metal microparticles besides Mg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.