The family of metal thiophosphates is an important but long-ignored compound system of the nonlinear optical (NLO) materials with desirable properties for the mid-infrared (mid-IR) coherent light generation. In the present work, the mid-IR NLO capabilities of metal thiophosphate crystals are systematically investigated based on their structure-property relationship. The linear and nonlinear optical properties of these crystals are predicted and analyzed using the first-principles calculations. In particular, several metal thiophosphate compounds are highlighted to exhibit good mid-IR NLO performances, as supported by the primary experimental results. These candidates would greatly promote the development of the mid-IR NLO functional materials.
A new mercury selenide BaHgSe2 was synthesized. This air-stable compound displays a large nonlinear optical (NLO) response and melts congruently. The structure contains chains of corner-sharing [HgSe3](4-) anions in the form of trigonal planar units, which may serve as a new kind of basic functional group in IR NLO materials to confer large NLO susceptibilities and physicochemical stability. Such trigonal planar units may inspire a path to finding new classes of IR NLO materials of practical utility that are totally different from traditional chalcopyrite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.