The acceleration of a vehicle is important information in vehicle states. The vehicle acceleration is measured by an inertial measurement unit (IMU). However, gravity affects the IMU when there is a transition in vehicle attitude; thus, the IMU produces an incorrect signal output. Therefore, vehicle attitude information is essential for obtaining correct acceleration information. This paper proposes a convolutional neural network (CNN) for attitude estimation. Using sequential data of a vehicle’s chassis sensor signal, the roll and pitch angles of a vehicle can be estimated without using a high-cost sensor such as a global positioning system or a six-dimensional IMU. This paper also proposes a dual-extended Kalman filter (DEKF), which can accurately estimate acceleration/angular velocity based on the estimated roll/pitch information. The proposed method is validated by real-car experiment data and CarSim, a vehicle simulator. It accurately estimates the attitude estimation with limited sensors, and the exact acceleration/angular velocity is estimated considering the roll and pitch angle with de-noising effect. In addition, the DEKF can improve the modeling accuracy and can estimate the roll and pitch rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.