Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes
Abstract. Process mining allows for the automated discovery of process models from event logs. These models provide insights and enable various types of model-based analysis. This paper demonstrates that the discovered process models can be extended with information to predict the completion time of running instances. There are many scenarios where it is useful to have reliable time predictions. For example, when a customer phones her insurance company for information about her insurance claim, she can be given an estimate for the remaining processing time. In order to do this, we provide a configurable approach to construct a process model, augment this model with time information learned from earlier instances, and use this to predict e.g. the completion time. To provide meaningful time predictions we use a configurable set of abstractions that allow for a good balance between "overfitting" and "underfitting". The approach has been implemented in ProM and through several experiments using real-life event logs we demonstrate its applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.