Unravelling the lithium-ion transport mechanism in α-Fe2O3 nanofibers through in situ electrochemical impedance studies is crucial for realizing their application in high-performance anodes in lithium-ion batteries. Herein, we report the effect of heat treatment conditions on the structure, composition, morphology, and electrochemical properties of α-Fe2O3 nanofibers as an anode for lithium-ion batteries. The α-Fe2O3 nanofibers were synthesized via electrospinning and post-annealing with differences in their annealing temperature of 300, 500, and 700 °C to produce FO300, FO500, and FO700 nanofibers, respectively. Improved electrochemical performance with a high reversible specific capacity of 599.6 mAh g−1 at a current density of 1 A g−1 was achieved after 50 cycles for FO700. The in situ electrochemical impedance spectroscopy studies conducted during the charge/discharge process revealed that the charge transfer and Li-ion diffusion behaviors were related to the crystallinity and structure of the as-synthesized α-Fe2O3 nanofibers. The surfaces of the α-Fe2O3 nanofibers were converted into Fe metal during the charging/discharging process, which resulted in improved electrical conductivity. The electron lifetime, as determined by the time constant of charge transfer, revealed that, when a conversion reaction occurred, the electrons tended to travel through the iron metal in the α-Fe2O3 nanofibers. The role of iron as a pseudo-resistor with negligible capacitance was revealed by charge transfer resistance analysis.
The aim of this study is to prepare ciprofloxacin (CIP) or levofloxacin (LEVO)-incorporated and polydopamine (PDA)-coated nephrite composites for application in drug-eluting contact lenses. PDA was coated onto the surface of nephrite to improve antibacterial activity and to payload antibiotics. CIP or LEVO was incorporated into the PDA layer on the surface of nephrite. Furthermore, CIP-incorporated/PDA-coated nephrite composites were embedded into the contact lenses. PDA-coated nephrite composites showed dull and smooth surfaces according to the dopamine concentration while nephrite itself has sharp surface morphology. CIP- or LEVO-loaded/PDA-coated nephrite composites also have dull and smooth surface properties. Nano and/or sub-micron clusters were observed in field emission-scanning electron microscopy (FE-SEM) observation, indicating that PDA nanoparticles were accumulated and coated onto the surface of nephrite. Furthermore, CIP- or LEVO-incorporated/PDA-coated nephrite composites showed the sustained release of CIP or LEVO in vitro and these properties contributed to the enhanced antibacterial activity of composites compared to nephrite or PDA-coated nephrite composites. CIP-incorporated/PDA-coated nephrite composites were embedded in the contact lenses and then, in an antibacterial study, they showed higher bactericidal effect against Staphylococcus aureus (S. aureus) compared to nephrite itself or PDA-coated nephrite composites. We suggest that CIP- or LEVO-loaded/PDA-coated nephrite composite-embedded contact lenses are a promising candidate for therapeutic application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.