Oxidation of graphite produces graphite oxide, which is dispersible in water as individual platelets. After deposition onto Si/SiO2 substrates, chemical reduction produces graphene sheets. Electrical conductivity measurements indicate a 10000-fold increase in conductivity after chemical reduction to graphene. Tapping mode atomic force microscopy measurements show one to two layer graphene steps. Electrodes patterned onto a reduced graphite oxide film demonstrate a field effect response when the gate voltage is varied from +15 to -15 V. Temperature-dependent conductivity indicates that the graphene-like sheets exhibit semiconducting behavior.
The formation of MoO(3) sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic alpha-MoO(3), which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO(6) octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the alpha-MoO(3) crystal.
Graphene has unique electronic properties1,2 and graphene nanoribbons are of particular interest because they exhibit a conduction band gap, which arises due to size confinement and edge effects3-11. Theoretical studies have suggested that graphene nanoribbons could have interesting magneto-electronic properties with very large magnetoresistance predicted4,12-20. Here we report the experimental observation of a significant enhancement in the conductance of a graphene nanoribbon field-effect transistor in a perpendicular magnetic field. A negative magnetoresistance of nearly 100% was observed at low temperatures, with over 50% remaining at room temperature. This magnetoresistance can be tuned by varying the gate or source-drain bias. We also find that the charge transport in the nanoribbons is not significantly modified by an in-plane magnetic field. The large values of the magnetoresistance we observe may be attributed to the reduction of quantum confinement by the formation of cyclotron orbits and the delocalization effect under the perpendicular magnetic field15-20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.