In semiconductor manufacturing, maintaining a high yield and ensuring accurate yield prediction are considerably important for improving productivity, customer satisfaction, and enhancing profitability. Despite its importance and merits, achieving wafer yield prediction with high quality and accuracy is challenging. In this paper, we propose a method for wafer edge yield prediction using a combined long short-term memory (LSTM) and feed-forward neural network (FFNN) model. Unlike previous research, we focus on the edge yield because of the higher yield loss at the wafer edge. The combined LSTM-FFNN model uses a dataset divided into two types according to data characteristics. Timeseries data are used in the case of LSTM, and non-time-series data are fed into the FFNN. When preparing the time-series data, comprising data related to the equipment and chambers, data of different chambers do not overlap, thereby rendering them as independent entities. The proposed model outperforms other models in terms of all evaluation metrics. The coefficient of determination of the proposed combined LSTM-FFNN model is 34.14%, which is almost 13% higher than that of the other compared models on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.