IntroductionThe aim of this study was to perform familial co-segregation analysis and functional trial in vivo during mixed meal tolerance test (MMTT) of novel variants in diabetes candidate genes.Research design and methodsIt is a continuation of the project “Genetic diabetes in Lithuania” with the cohort of 1209 patients with diabetes. Prior screening for autoimmune markers confirmed type 1 diabetes (T1D) diagnosis in 88.1% (n=1065) of patients, and targeted next-generation sequencing identified 3.5% (n=42) pathogenic variants in MODY genes. Subsequently, 102 patients were classified as having diabetes of unknown etiology. 12/102 were found to have novel variants in potential diabetes genes (RFX2,RREB1,SLC5A1(3 patients with variants in this gene),GCKR,MC4R,CASP10,TMPRSS6,HGFAC,DACH1,ZBED3). Co-segregation analysis and MMTT were carried out in order to study beta-cell function in subjects with specific variants.ResultsMMTT analysis showed that probands with variants inMC4R,CASP10,TMPRSS6,HGFAC, andSLC5A1(c.1415T>C) had sufficient residual beta-cell function with stimulated C-peptide (CP) >200 pmol/L. Seven individuals with variants inRFX2,RREB1,GCKR,DACH1,ZBED3andSLC5A1(c.1415T>C, and c.932A>T) presented with complete beta-cell failure. No statistical differences were found between patients with sufficient CP production and those with complete beta-cell failure when comparing age at the onset and duration of diabetes. Nineteen family members were included in co-segregation analysis; no diabetes cases were reported among them. Only in patient with the variant c.1894G>A inRFX2gene, none of the family members were affected by proband’s variant.ConclusionsFunctional beta-cell study in vivo allowed to select five most probable genes for monogenic diabetes. Familial co-segregation analysis showed that novel variant inRFX2gene could be a possible cause of diabetes. Future functional analysis in vitro is necessary to support or rule out the genetic background as a cause of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.