The dynamic solvation of the fluorescent probe, coumarin 153, is measured in five room-temperature ionic liquids using different experimental techniques and methods of data analysis. With time-resolved stimulatedemission and time-correlated single-photon counting techniques, it is found that the solvation is comprised of an initial rapid component of ∼55 ps. In all the solvents, half or more of the solvation is completed within 100 ps. The remainder of the solvation occurs on a much longer time scale. The emission spectra of coumarin 153 are nearly superimposable at all temperatures in a given solvent unless they are obtained using the supercooled liquid, suggesting that the solvents have an essentially glassy nature. The physical origin of the two components is discussed in terms of the polarizability of the organic cation for the faster one and the relative diffusional motion of the cations and the anions for the slower one. A comparison of the solvation response functions obtained from single-wavelength and from spectral-reconstruction measurements is provided. Preliminary fluorescence-upconversion measurements are presented against which the appropriateness of the single-wavelength method for constructing solvation correlation functions and the use of stimulated-emission measurements is considered. These measurements are consistent with the trends mentioned above, but a comparison indicates that the presence of one or more excited states distorts the stimulated-emission kinetics such that they do not perfectly reproduce the spontaneous emission data. Fluorescence-upconversion results indicate an initial solvation component on the order of ∼7 ps. December 2, 2003; In Final Form: April 20, 2004 The dynamic solvation of the fluorescent probe, coumarin 153, is measured in five room-temperature ionic liquids using different experimental techniques and methods of data analysis. With time-resolved stimulatedemission and time-correlated single-photon counting techniques, it is found that the solvation is comprised of an initial rapid component of ∼55 ps. In all the solvents, half or more of the solvation is completed within 100 ps. The remainder of the solvation occurs on a much longer time scale. The emission spectra of coumarin 153 are nearly superimposable at all temperatures in a given solvent unless they are obtained using the supercooled liquid, suggesting that the solvents have an essentially glassy nature. The physical origin of the two components is discussed in terms of the polarizability of the organic cation for the faster one and the relative diffusional motion of the cations and the anions for the slower one. A comparison of the solvation response functions obtained from single-wavelength and from spectral-reconstruction measurements is provided. Preliminary fluorescence-upconversion measurements are presented against which the appropriateness of the single-wavelength method for constructing solvation correlation functions and the use of stimulated-emission measurements is considered. These...
An analysis is provided of the subnanosecond dynamic solvation of ionic liquids in particular and ionic solutions in general. It is our hypothesis that solvation relaxation in ionic fluids, in the nonglassy and nonsupercooled regimes, can be understood rather simply in terms of the dielectric spectra of the solvent. This idea is suggested by the comparison of imidazolium ionic liquids with their pure organic counterpart, butylimidazole (J. Phys. Chem. B 2004, 108, 10245-10255). It is borne out by a calculation of the solvation correlation time from frequency dependent dielectric data for the ionic liquid, ethylammonium nitrate, and for the electrolyte solution of methanol and sodium perchlorate. Very good agreement is obtained between these theoretically calculated solvation relaxation functions and those obtained from fluorescence upconversion spectroscopy. Our comparisons suggest that translational motion of ions may not be the predominant factor in short-time solvation of ionic fluids and that many tools and ideas about solvation dynamics in polar solvents can be adapted to ionic fluids.
Steady-state and time-resolved Stokes shift data for the probe coumarin 153 in two imidazoles, six imidazolium-based ionic liquids, and several other solvents are presented. These results are consistent with our original suggestion (J. Phys. Chem. B 2004, 108, 10245−10255) that initial solvation is dominated by the organic moiety of the ionic liquid, and they show that for the imidazole-based liquids initial solvation is in all cases very rapid. Solvation by methylimidazole and butylimidazole is complete in 100 ps, and all of the imidazolium ionic liquids demonstrate similarly rapid initial solvation. Owing to the importance of determining the amount of initial solvation that is missed in a given experiment with finite time resolution, we discuss a method of estimating the intramolecular contribution to the reorganization energy. This method yields 2068 cm-1 and is compared with an alternative method. ReceiVed: February 1, 2006; In Final Form: May 18, 2006 Steady-state and time-resolved Stokes shift data for the probe coumarin 153 in two imidazoles, six imidazoliumbased ionic liquids, and several other solvents are presented. These results are consistent with our original suggestion (J. Phys. Chem. B 2004, 108, 10245-10255) that initial solvation is dominated by the organic moiety of the ionic liquid, and they show that for the imidazole-based liquids initial solvation is in all cases very rapid. Solvation by methylimidazole and butylimidazole is complete in 100 ps, and all of the imidazolium ionic liquids demonstrate similarly rapid initial solvation. Owing to the importance of determining the amount of initial solvation that is missed in a given experiment with finite time resolution, we discuss a method of estimating the intramolecular contribution to the reorganization energy. This method yields 2068 cm -1 and is compared with an alternative method.
Cochineal Red A is a negatively charged synthetic azo food colorant and a potential carcinogen. We present here the study of binding of Cochineal Red A with two homologous serum albumins, human (HSA) and bovine (BSA), in aqueous pH 7.4 buffer by optical spectroscopic techniques. Protein intrinsic fluorescence quenching by Cochineal Red A occurs through ground-state static interaction and its binding with BSA is stronger than with HSA. The magnitudes of thermodynamic parameters suggest that dye binding occurs principally via electrostatic complexation. Site-marker competitive binding shows that Cochineal Red A binds primarily to site I of serum albumins. Circular dichroic spectra indicate that dye binding results in some conformational modification of serum albumins. Increased ionic strength of the medium results in lowering of binding. This study provides an important insight into possible means of removal of dye toxicity.
The complexes of the fluorescence probe coumarin 153 with apomyoglobin and apoleghemoglobin are used as model systems to study solvation dynamics in proteins. Time-resolved Stokes shift experiments are compared with molecular dynamics simulations, and very good agreement is obtained. The solvation of the coumarin probe is very rapid with approximately 60% occurring within 300 fs and is attributed to interactions with water (or possibly to the protein itself). Differences in the solvation relaxation (or correlation) function C(t) for the two proteins are attributed to differences in their hemepockets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.