Biological systems have long recognized the importance of macromolecular diversity and have evolved efficient processes for the rapid synthesis of sequence-defined biopolymers. However, achieving sequence control via synthetic methods has proven to be a difficult challenge. Herein we describe efforts to circumvent this difficulty via the use of orthogonal allyl acrylamide building blocks and a liquid-phase fluorous support for the de novo design and synthesis of sequence-specific polymers. We demonstrate proof-of-concept via synthesis and characterization of two sequence-isomeric 10-mer polymers. (1)H NMR and LCMS were used to confirm their chemical structure while tandem MS was used to confirm sequence identity. Further validation of this methodology was provided via the successful synthesis of a sequence-specific 16-mer polymer incorporating nine different monomers. This strategy thus shows promise as an efficient approach for the assembly of sequence-specific functional polymers.
We have been exploring the use of a deep cavity cavitand known by the trivial name 'octa acid' as a photochemical reaction cavity for manipulating photochemical and photophysical properties of organic molecules. In the current study, we have monitored the micropolarity of the interior of the cavitand by recording the fluorescence of five different organic probes. They all indicate that the interior of octa acid capsuleplex (2:1, H/G complex) is nonpolar and does not contain water molecules in spite of the complex being present in water. The nature of the octa acid-probe complex in each case has been characterized by 1H NMR data to be a 2:1 capsuleplex. Photophysical and 1H NMR experiments were employed to probe the factors that control the structure of the complex, 2:2, 2:1, and 1:1. The data we have on hand suggest that the structure of the host/guest complex depends on the size and hydrophobicity of the guest molecule.
DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a singlemolecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotidebased polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time singlemolecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.single-molecule sequencing | nanopore | DNA sequencing by synthesis | polymer-tagged nucleotides | chip array T he importance of DNA sequencing has increased dramatically from its inception four decades ago. It is recognized as a crucial technology for most areas of biology and medicine and as the underpinning for the new paradigm of personalized and precision medicine. Information on individuals' genomes and epigenomes can help reveal their propensity for disease, clinical prognosis, and response to therapeutics, but routine application of genome sequencing in medicine will require comprehensive data delivered in a timely and cost-effective manner (1). Although 35 years of technological advances have improved sequence throughput and have reduced costs exponentially, genome analysis still takes several days and thousands of dollars to complete (1, 2). To realize the potential of personalized medicine fully, the speed and cost of sequencing must be brought down another order of magnitude while increasing sequencing accuracy and read length. Singlemolecule approaches are thought to be essential to meet these requirements and offer the additional benefit of eliminating amplification bias (3, 4). Although optical methods for singlemolecule sequencing have been achieved and commercialize...
Factors that govern inclusion of organic molecules within octa acid (OA), a synthetic deep cavity cavitand, have been delineated by examining the complexation behavior of a number of organic molecules with varying dimensions and functionalities with OA. The formation of two types of complexes has been noted: the one which we call cavitandplex is a partially open complex in which a part of the guest molecule remains exposed to water, and the other termed capsuleplex is formed through assembly of two OA molecules. In capsuleplex, the guest is protected from water. Generally, guest molecules that possess ionic head groups form cavitandplex, and all others form capsuleplex. Capsuleplex may contain one or two guest molecules within the capsule. Small organic molecules (<10 A in length) may form both 2:1 and 2:2 capsuleplex, while longer ones (>12 A) preferentially form 2:1 capsuleplex. Extensive 1H NMR experiments have been carried out to characterize host-guest complexes. In the absence of the guest, OA tends to aggregate in water. The extent of aggregation depends on the concentration of OA and the presence of salts in solution. We expect the information obtained from this study to be of great value in predicting the nature of complexes with a given guest and facilitating appropriate guest chosen by researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.