Random Forest is an ensemble machine learning method developed by Leo Breiman in 2001. Since then, it has been considered the state-of-the-art solution in machine learning applications. Compared to the other ensemble methods, random forests exhibit superior predictive performance. However, empirical and statistical studies prove that the random forest algorithm generates unnecessarily large number of base decision trees. This may cost high computational efficiency, predictive time, and occasional decrease in effectiveness. In this paper, Authors survey existing random forest pruning techniques and compare the performance between them. The research revolves around both the static and dynamic pruning technique and analyses the scope of improving the performance of random forest by techniques including generating diverse and accurate decision trees, selecting high performance subset of decision trees, genetic algorithms and other state of art methods, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.