We investigate the transient viscoelastic behavior of weakly strain-hardening fluids in filament stretching devices during uniaxial elongation and following the cessation of stretching. The numerical results are compared with experimental observations on a concentrated shear-thinning polystyrene solution which is well characterized by a multi-mode Giesekus model. The finite element computations incorporate the effects of viscoelasticity, surface tension, and fluid inertia and the time-dependent moving-boundary problem is solved using the code POLYFLOW. A detailed comparison of multi-mode computations with single-mode solution is presented in order to examine the differences in the predicted viscoelastic behavior and the role of the fluid relaxation spectrum. The evolution in the transient Trouton ratio at different deformation rates is compared with experimental measurements and with the theoretical predictions of ideal homogeneous uniaxial elongation. Simulations of the filament stretching device using the multi-mode viscoelastic model demonstrate a significant improvement in the agreement between the predicted and observed extensional viscosity at short times. The computed Trouton ratio is also in good agreement with theoretical expectations for ideal homogeneous uniaxial extension, despite the strongly nonhomogeneous viscoelastic necking of the fluid column observed during elongation in the filament stretching device. Following the cessation of elongation, numerical simulations predict an interesting and complex evolution in the kinematics of the fluid filament. Initially the tensile stresses in the column relax in the non-linear form predicted theoretically, indicating that filament stretching devices can be used to monitor transient extensional stress relaxation, provided that the evolution of the tensile force at the end-plate and the filament radius at the mid-plane are carefully measured. However, at longer times after cessation of stretching, the local extension rate at the axial mid-plane begins to increase rapidly, leading to a`necking failure' that is greatly accelerated compared to that expected in a corresponding Newtonian filament. The calculations show that this unstable necking is not driven solely by the surface tension but also by the viscoelasticity of the fluid, and is coupled with significant elastic recoil of the material near the end-plates. The rate of necking in the column is a sensitive function of the extensional viscosity predicted by the constitutive model, in particular the magnitude and the rate of strain-hardening that occurs during uniaxial elongation. This phenomenon can also be simply and accurately described by an appropriate set of coupled onedimensional thin filament equations that use the finite element computations to provide a suitable initial condition for the axial distribution of the polymeric stresses in the filament.
We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(-3)gamma tau , C gamma depends also on both x 0 and omega . The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma)/eta(0)=[1+A gamma|gamma tau|]-x eta/(3+x eta) , where x eta=0.069 is the critical exponent for viscosity and mode-coupling theory predicts A gamma=0.121 . For xenon we find A gamma=0.137+/-0.029 , in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature Tc were independent of the cooling rate (both above and below Tc ) and these data were symmetric about Tc to within a temperature scale factor. The scale factors for the magnitude of the oscillator's response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below Tc .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.