A surface light field represents the radiance of rays originating from any points on the surface in any directions. Traditional approaches require ultra-dense sampling to ensure the rendering quality. In this paper, we present a novel neural network based technique called deep surface light field or DSLF to use only moderate sampling for high fidelity rendering. DSLF automatically fills in the missing data by leveraging different sampling patterns across the vertices and at the same time eliminates redundancies due to the network's prediction capability. For real data, we address the image registration problem as well as conduct texture-aware remeshing for aligning texture edges with vertices to avoid blurring. Comprehensive experiments show that DSLF can further achieve high data compression ratio while facilitating real-time rendering on the GPU.
Generating free-viewpoint videos is critical for immersive VR/AR experience, but recent neural advances still lack the editing ability to manipulate the visual perception for large dynamic scenes. To fill this gap, in this paper, we propose the first approach for editable free-viewpoint video generation for large-scale view-dependent dynamic scenes using only 16 cameras. The core of our approach is a new layered neural representation, where each dynamic entity, including the environment itself, is formulated into a spatiotemporal coherent neural layered radiance representation called ST-NeRF. Such a layered representation supports manipulations of the dynamic scene while still supporting a wide free viewing experience. In our ST-NeRF, we represent the dynamic entity/layer as a continuous function, which achieves the disentanglement of location, deformation as well as the appearance of the dynamic entity in a continuous and self-supervised manner. We propose a scene parsing 4D label map tracking to disentangle the spatial information explicitly and a continuous deform module to disentangle the temporal motion implicitly. An object-aware volume rendering scheme is further
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.