The NF-B family of transcription factors plays a pivotal role in regulation of diverse biological processes, including immune responses, cell growth, and apoptosis. Activation of NF-B is mediated by both canonical and noncanonical signaling pathways. Although the canonical pathway has been extensively studied, the mechanism mediating the noncanonical pathway is still poorly understood. Recent studies have identified the NF-B-inducing kinase (NIK) as a key component of the noncanonical pathway of NF-B activation; however, how the signaling function of NIK is regulated remains unknown. We report here that one important mechanism of NIK regulation is through its dynamic interaction with the tumor necrosis factor receptor-associated factor 3 (TRAF3). TRAF3 physically associates with NIK via a specific sequence motif located in the N-terminal region of NIK; this molecular interaction appears to target NIK for degradation by the proteasome. Interestingly, induction of noncanonical NF-B signaling by extracellular signals involves degradation of TRAF3 and the concomitant enhancement of NIK expression. These results suggest that induction of noncanonical NF-B signaling may involve the rescue of NIK from TRAF3-mediated negative regulation.
Purpose Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) is a promising treatment for metastatic melanoma unresponsive to conventional therapies. We report here on the results of an ongoing Phase II clinical trial testing the efficacy of ACT using TIL in metastatic melanoma patients and the association of specific patient clinical characteristics and the phenotypic attributes of the infused TIL with clinical response. Experimental Design Altogether, 31 transiently lymphodepleted patients were treated with their expanded TIL followed by two cycles of high-dose (HD) IL-2 therapy. The effects of patient clinical features and the phenotypes of the T-cells infused on clinical response were determined. Results Overall, 15/31 (48.4%) patients had an objective clinical response using immune-related response criteria (irRC), with two patients (6.5%) having a complete response. Progression-free survival of >12 months was observed for 9/15 (60%) of the responding patients. Factors significantly associated with objective tumor regression included a higher number of TIL infused, a higher proportion of CD8+ T-cells in the infusion product, a more differentiated effector phenotype of the CD8+ population and a higher frequency of CD8+ T-cells co-expressing the negative costimulation molecule “B- and T-lymphocyte attenuator” (BTLA). No significant difference in telomere lengths of TIL between responders and non-responders was identified. Conclusion These results indicate that immunotherapy with expanded autologous TIL is capable of achieving durable clinical responses in metastatic melanoma patients and that CD8+ T-cells in the infused TIL, particularly differentiated effectors cells and cells expressing BTLA, are associated with tumor regression.
NF-kappaB family of transcription factors plays a pivotal role in regulation of immune and inflammatory responses. NF-kappaB is known to function by binding to the kappaB enhancer and directly activating target gene transcription. Here we demonstrate another function of NF-kappaB, in which the nfkappab1 gene product p105 regulates MAP kinase signaling triggered by the bacterial component lipopolysaccharide. p105 exerts this signaling function by controlling the stability and function of an upstream kinase, Tpl2. In macrophages, Tpl2 forms a stable and inactive complex with p105, and activation of Tpl2 involves its dissociation from p105 and subsequent degradation. Thus, p105 functions as a physiological partner and inhibitor of Tpl2, which provides an example of how a transcription factor component regulates upstream signaling events.
Purpose Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors. Experimental Design BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2Db to allow recognition by gp100-specific pmel-1 T-cells were used as xenograft models to assess melanocyte differentiation antigen-independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of vascular endothelial growth factor (VEGF) was determined by enzyme-linked immunosorbent assay, protein array and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples. Results We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the pre-clinical murine model. Conclusion These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell based immunotherapy for the treatment of melanoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.