Parkinson disease (PD), progressive supranuclear palsy (PSP), and multiple-system atrophy (MSA) are known to affect dopaminergic neurons of the brain stem and striatum with different preferential involvement. Here we investigated differences in striatal subregional dopamine transporter loss in PD, PSP, and MSA and assessed the diagnostic value of 18 F-fluorinated-N-3-fluoropropyl-2-b-carboxymethoxy-3-b-(4-iodophenyl)nortropane ( 18 F-FP-CIT) PET in differentiating PSP and MSA from PD. Methods: Forty-nine patients with PD, 19 patients with PSP, 24 patients with MSA, and 21 healthy people (healthy controls) were examined with 18 F-FP-CIT PET. The PET images were spatially normalized and analyzed with 12 striatal subregional volume-of-interest (VOI) templates (bilateral ventral striatum [VS], anterior caudate [AC], posterior caudate, anterior putamen, posterior putamen [PP], and ventral putamen [VP]) and 1 occipital VOI template. The nondisplaceable binding potential (BP ND ) and intersubregional ratio (ISR; defined as the ratio of the BP ND of one striatal subregion to that of another striatal subregion) of subregional VOIs were calculated. Results: The BP ND of all VOIs in the PD, MSA, and PSP groups were significantly lower than those in the healthy controls (P , 0.05). The BP ND of AC and the AC/VS ISR in the PSP group were significantly lower than those in the PD group. The BP ND of VP was significantly lower, but the PP/VP ISR was significantly higher in the MSA group than in the PD group. At the cutoff value for the AC/VS ISR (,0.7), the sensitivity and specificity for differentiating PSP from PD were 94% and 92%, respectively. At the cutoff value for the PP/VP ISR (.0.65), the sensitivity and specificity for differentiating MSA from PD were 90% and 45%, respectively. The diagnostic accuracy of visual analysis was similar to that of quantitative analysis for differentiating PSP from PD but was significantly higher for differentiating MSA from PD. Conclusion: Compared with PD, PSP and MSA showed more prominent and earlier dopamine transporter loss in the AC and VP, respectively. These findings could be useful for suggesting PSP or MSA in parkinsonian cases without characteristic atypical features.
Purpose Dopamine transporter (DAT) imaging can demonstrate presynaptic dopaminergic neuronal loss in Parkinson's disease (PD). However, differentiating atypical parkinsonism (APD) from PD is often difficult. We investigated the usefulness of dual-phase F-18 FP-CIT positron emission tomography (PET) imaging in the differential diagnosis of parkinsonism. Methods Ninety-eight subjects [five normal, seven druginduced parkinsonism (DIP), five essential tremor (ET), 24 PD, 20 multiple system atrophy-parkinson type (MSA-P), 13 multiple system atrophy-cerebellar type (MSA-C), 13 progressive supranuclear palsy (PSP), and 11 dementia with Lewy bodies (DLB)] underwent F-18 FP-CIT PET. PET images were acquired at 5 min (early phase) and 3 h (late phase) after F-18 FP-CIT administration (185 MBq). Regional uptake pattern of cerebral and cerebellar hemispheres was assessed on early phase images and striatal DAT binding pattern was assessed on late phase images, using visual, quantitative, and statistical parametric mapping (SPM) analyses. Results Striatal DAT binding was normal in normal, ET, DIP, and MSA-C groups, but abnormal in PD, MSA-P, PSP, and DLB groups. No difference was found in regional uptake on early phase images among normal DAT binding groups, except in the MSA-C group. Abnormal DAT binding groups showed different regional uptake pattern on early phase images compared with PD in SPM analysis (FDR< 0.05). When discriminating APD from PD, visual interpretation of the early phase image showed high diagnostic sensitivity and specificity (75.4 % and 100 %, respectively). Regarding the ability to distinguish specific APD, sensitivities were 81 % for MSA-P, 77 % for MSA-C, 23 % for PSP, and 54.5 % for DLB. Conclusions Dual-phase F-18 FP-CIT PET imaging is useful in demonstrating striatal DAT loss in neurodegenerative parkinsonism, and also in differentiating APD, particularly MSA, from PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.