With the prevalence of COVID-19, the modeling of epidemic propagation and its analyses have played a significant role in controlling epidemics. However, individual behaviors, in particular the self-protection and migration, which have a strong influence on epidemic propagation, were always neglected in previous studies. In this paper, we mainly propose two models from the individual and population perspectives. In the first individual model, we introduce the individual protection degree that effectively suppresses the epidemic level as a stochastic variable to the SIRS model. In the alternative population model, an open Markov queueing network is constructed to investigate the individual number of each epidemic state, and we present an evolving population network via the migration of people. Besides, stochastic methods are applied to analyze both models. In various simulations, the infected probability, the number of individuals in each state and its limited distribution are demonstrated.
Evolutionary game on complex networks provides a new research framework for analyzing and predicting group decision-making behavior in an interactive environment, in which most researchers assumed players as profiteers. However, current studies have shown that players are sometimes conformists rather than profit-seeking in society, but most research has been discussed on a simple game without considering the impact of multiple games. In this paper, we study the influence of conformists and profiteers on the evolution of cooperation in multiple games and illustrate two different strategy-updating rules based on these conformists and profiteers. Different from previous studies, we introduce a similarity between players into strategy-updating rules and explore the evolutionary game process, including the strategy updating, the transformation of players’ type, and the dynamic evolution of the network structure. In the simulation, we implement our model on scale-free and regular networks and provide some explanations from the perspective of strategy transition, type transition, and network topology properties to prove the validity of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.