To discover novel tubulin inhibitors, we performed structure-based virtual screening against the colchicine binding pocket. In combination with a hierarchical docking and scoring procedure, the structural information of an additional subpocket in colchicine site was applied to filter out the undesired docking hits. This strategy automatically resulted in 63 candidates meeting the structural and energetic criteria from a screening library containing approximately 100,000 diverse druglike compounds. Among them, nine molecules were chosen for experimental validation, which all share the similar binding pose and contain an enriched scaffold bearing thiophene core. Encouragingly, five compounds are active in tubulin polymerization assay. The most potent inhibitor, 2-(2-fluorobenzamido)-3-carboxamide-4,5-dimethylthiophene, is structurally distinct to any known colchicine site binders and has higher ligand efficiency than colchicine. On the basis of its predicted binding pose, we systematically probed its binding characteristics by testing series of structural modifications. The obtained structure-activity relationship results are consistent with our binding model, and the inhibition activities of two analogues are improved by 2-fold. We expect that the novel structure discovered in the present study may serve as a starting point for developing tubulin inhibitors with improved efficacy and fewer side effects. We also expect that our hierarchical strategy may be generally applicable in structure-based virtual screening campaigns.
Gold-containing compounds have shown anticancer potential, but their clinical applications have been severely limited by poor stability and high toxicity in vivo. Here, we report a novel soluble bis-chelated gold(I)-diphosphine compound (GC20) with strong anticancer activity and low toxicity. GC20 shows strong antiproliferation potency against a broad spectrum of cancer cell lines including cisplatin-resistant cancer cells (IC50 ≈ 0.5 μM) and significantly reduces tumor growth in several tumor xenografts in mouse models at doses as low as 2 mg/kg. Studies of its mechanism revealed that GC20 specifically inhibits the enzymatic activity of thioredoxin reductase by binding to selenocysteine residue, without targeting other well-known selenol and thiol groups contained in biomolecules. Remarkably, in animal studies GC20 was shown to be well tolerated even at the high dose of 8 mg/kg. Our results strongly suggest that GC20 represents a promising candidate for the development of novel anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.