We demonstrate a novel two-dimensional material, fluorinated graphitic carbon nitride (g-C3N4) nanosheets, with intrinsic ferromagnetism; its Curie temperature can reach as high as 700 K.
Quantum scars constitute one of the fundamental pillars in the traditional field of nonrelativistic quantum chaos. In relativistic quantum systems, chiral scars have been discovered recently whose wave functions concentrate on odd periodic orbits and break the time-reversal symmetry. We develop a theoretical framework to unify the scarring phenomena in nonrelativistic and relativistic quantum systems, which were previously thought to be distinct. In particular, we exploit massive Dirac billiard systems and derive semiclassical quantization rules to bridge the two opposite limits: the massless Dirac case and the large mass regime where the system effectively degenerates into one governed by the Schrödinger equation. A nontrivial phase is uncovered, which depends on the mass, the wave number, and the angle of reflection, and we demonstrate that this phase plays a key role in transforming the chiral scars and in bridging the relativistic and nonrelativistic quantum scars. In the large-mass limit, time-reversal symmetry is restored, as evidenced by a spectral analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.