TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.
Similar symptoms of the different types of arthritis have continued to confound the clinical diagnosis and represent a clinical dilemma making treatment choices with a more personalized or generalized approach. Here we report a mass spectrometry-based metabolic phenotyping study to identify the global metabolic defects associated with arthritis as well as metabolic signatures of four major types of arthritis--rheumatoid arthritis (n = 27), osteoarthritis (n = 27), ankylosing spondylitis (n = 27), and gout (n = 33)--compared with healthy control subjects (n = 60). A total of 196 metabolites were identified from serum samples using a combined gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF MS) and ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QTOF MS). A global metabolic profile is identified from all arthritic patients, suggesting that there are common metabolic defects resulting from joint inflammation and lesion. Meanwhile, differentially expressed serum metabolites are identified constituting an unique metabolic signature of each type of arthritis that can be used as biomarkers for diagnosis and patient stratification. The results highlight the applicability of metabonomic phenotyping as a novel diagnostic tool for arthritis complementary to existing clinical modalities.
In our precious study, the correlation between cold and hot patterns in traditional Chinese medicine (TCM) and gene expression profiles in rheumatoid arthritis (RA) has been explored. Based on TCM theory, deficiency pattern is another key pattern diagnosis among RA patients, which leads to a specific treatment principle in clinical management. Therefore, a further analysis was performed aiming at exploring the characteristic gene expression profile of deficiency pattern and its correlation with cold and hot patterns in RA patients by bioinformatics analysis approach based on gene expression profiles data detected with microarray technology. The TCM deficiency pattern-related genes network comprises 7 significantly, highly connected regions which are mainly involved in protein transcription processes, protein ubiquitination, toll-like receptor activated NF-κB regulated gene transcription and apoptosis, RNA clipping, NF-κB signal, nucleotide metabolism-related apoptosis, and immune response processes. Toll-like receptor activated NF-κB regulated gene transcription and apoptosis pathways are potential specific pathways related to TCM deficiency patterns in RA patients; TCM deficiency pattern is probably related to immune response. Network analysis can be used as a powerful tool for detecting the characteristic mechanism related to specific TCM pattern and the correlations between different patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.