This paper proposes a cross-shaped micromixer featuring a pair barrier within the mixing channel. The proposed device obtains a rapid mixing of two sample fluids by means of the electrokinetic instability-induced shedding effects which are produced when a DC electric field of an appropriate intensity is applied. The proposed device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electric field intensity and the extent to which a pair barrier obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 96% at a cross-section located 1 mm downstream of the cross-junction when an electric field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.
This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.